Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Forked/repurposed from `font-rs` code: https://github.com/raphlinus/font-rs
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Modifications copyright (C) 2020 Alex Butler
//
// Cubic bezier drawing adapted from stb_truetype: https://github.com/nothings/stb
#[cfg(all(feature = "libm", not(feature = "std")))]
use crate::nostd_float::FloatExt;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

use crate::geometry::{lerp, Point};

/// Coverage rasterizer for lines, quadratic & cubic beziers.
pub struct Rasterizer {
    width: usize,
    height: usize,
    a: Vec<f32>,
}

impl Rasterizer {
    /// Allocates a new rasterizer that can draw onto a `width` x `height` alpha grid.
    ///
    /// ```
    /// use ab_glyph_rasterizer::Rasterizer;
    /// let mut rasterizer = Rasterizer::new(14, 38);
    /// ```
    pub fn new(width: usize, height: usize) -> Self {
        Self {
            width,
            height,
            a: vec![0.0; width * height + 4],
        }
    }

    /// Returns the dimensions the rasterizer was built to draw to.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// let rasterizer = Rasterizer::new(9, 8);
    /// assert_eq!((9, 8), rasterizer.dimensions());
    /// ```
    pub fn dimensions(&self) -> (usize, usize) {
        (self.width, self.height)
    }

    /// Adds a straight line from `p0` to `p1` to the outline.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(9, 8);
    /// rasterizer.draw_line(point(0.0, 0.48), point(1.22, 0.48));
    /// ```
    pub fn draw_line(&mut self, p0: Point, p1: Point) {
        if (p0.y - p1.y).abs() <= core::f32::EPSILON {
            return;
        }
        let (dir, p0, p1) = if p0.y < p1.y {
            (1.0, p0, p1)
        } else {
            (-1.0, p1, p0)
        };
        let dxdy = (p1.x - p0.x) / (p1.y - p0.y);
        let mut x = p0.x;
        let y0 = p0.y as usize; // note: implicit max of 0 because usize (TODO: really true?)
        if p0.y < 0.0 {
            x -= p0.y * dxdy;
        }
        for y in y0..self.height.min(p1.y.ceil() as usize) {
            let linestart = y * self.width;
            let dy = ((y + 1) as f32).min(p1.y) - (y as f32).max(p0.y);
            let xnext = x + dxdy * dy;
            let d = dy * dir;
            let (x0, x1) = if x < xnext { (x, xnext) } else { (xnext, x) };
            let x0floor = x0.floor();
            let x0i = x0floor as i32;
            let x1ceil = x1.ceil();
            let x1i = x1ceil as i32;
            if x1i <= x0i + 1 {
                let xmf = 0.5 * (x + xnext) - x0floor;
                let linestart_x0i = linestart as isize + x0i as isize;
                if linestart_x0i < 0 {
                    continue; // oob index
                }
                self.a[linestart_x0i as usize] += d - d * xmf;
                self.a[linestart_x0i as usize + 1] += d * xmf;
            } else {
                let s = (x1 - x0).recip();
                let x0f = x0 - x0floor;
                let a0 = 0.5 * s * (1.0 - x0f) * (1.0 - x0f);
                let x1f = x1 - x1ceil + 1.0;
                let am = 0.5 * s * x1f * x1f;
                let linestart_x0i = linestart as isize + x0i as isize;
                if linestart_x0i < 0 {
                    continue; // oob index
                }
                self.a[linestart_x0i as usize] += d * a0;
                if x1i == x0i + 2 {
                    self.a[linestart_x0i as usize + 1] += d * (1.0 - a0 - am);
                } else {
                    let a1 = s * (1.5 - x0f);
                    self.a[linestart_x0i as usize + 1] += d * (a1 - a0);
                    for xi in x0i + 2..x1i - 1 {
                        self.a[linestart + xi as usize] += d * s;
                    }
                    let a2 = a1 + (x1i - x0i - 3) as f32 * s;
                    self.a[linestart + (x1i - 1) as usize] += d * (1.0 - a2 - am);
                }
                self.a[linestart + x1i as usize] += d * am;
            }
            x = xnext;
        }
    }

    /// Adds a quadratic Bézier curve from `p0` to `p2` to the outline using `p1` as the control.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(14, 38);
    /// rasterizer.draw_quad(point(6.2, 34.5), point(7.2, 34.5), point(9.2, 34.0));
    /// ```
    pub fn draw_quad(&mut self, p0: Point, p1: Point, p2: Point) {
        let devx = p0.x - 2.0 * p1.x + p2.x;
        let devy = p0.y - 2.0 * p1.y + p2.y;
        let devsq = devx * devx + devy * devy;
        if devsq < 0.333 {
            self.draw_line(p0, p2);
            return;
        }
        let tol = 3.0;
        let n = 1 + (tol * devsq).sqrt().sqrt().floor() as usize;
        let mut p = p0;
        let nrecip = (n as f32).recip();
        let mut t = 0.0;
        for _i in 0..n - 1 {
            t += nrecip;
            let pn = lerp(t, lerp(t, p0, p1), lerp(t, p1, p2));
            self.draw_line(p, pn);
            p = pn;
        }
        self.draw_line(p, p2);
    }

    /// Adds a cubic Bézier curve from `p0` to `p3` to the outline using `p1` as the control
    /// at the beginning of the curve and `p2` at the end of the curve.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let mut rasterizer = Rasterizer::new(12, 20);
    /// rasterizer.draw_cubic(
    ///     point(10.3, 16.4),
    ///     point(8.6, 16.9),
    ///     point(7.7, 16.5),
    ///     point(8.2, 15.2),
    /// );
    /// ```
    pub fn draw_cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point) {
        self.tesselate_cubic(p0, p1, p2, p3, 0);
    }

    // stb_truetype style cubic approximation by lines.
    fn tesselate_cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point, n: u8) {
        // ...I'm not sure either ¯\_(ツ)_/¯
        const OBJSPACE_FLATNESS: f32 = 0.35;
        const OBJSPACE_FLATNESS_SQUARED: f32 = OBJSPACE_FLATNESS * OBJSPACE_FLATNESS;
        const MAX_RECURSION_DEPTH: u8 = 16;

        let longlen = p0.distance_to(p1) + p1.distance_to(p2) + p2.distance_to(p3);
        let shortlen = p0.distance_to(p3);
        let flatness_squared = longlen * longlen - shortlen * shortlen;

        if n < MAX_RECURSION_DEPTH && flatness_squared > OBJSPACE_FLATNESS_SQUARED {
            let p01 = lerp(0.5, p0, p1);
            let p12 = lerp(0.5, p1, p2);
            let p23 = lerp(0.5, p2, p3);

            let pa = lerp(0.5, p01, p12);
            let pb = lerp(0.5, p12, p23);

            let mp = lerp(0.5, pa, pb);

            self.tesselate_cubic(p0, p01, pa, mp, n + 1);
            self.tesselate_cubic(mp, pb, p23, p3, n + 1);
        } else {
            self.draw_line(p0, p3);
        }
    }

    /// Run a callback for each pixel index & alpha, with indices in `0..width * height`.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let (width, height) = (1, 1);
    /// # let mut rasterizer = Rasterizer::new(width, height);
    /// let mut pixels = vec![0u8; width * height];
    /// rasterizer.for_each_pixel(|index, alpha| {
    ///     pixels[index] = (alpha * 255.0).round() as u8;
    /// });
    /// ```
    pub fn for_each_pixel<O: FnMut(usize, f32)>(&self, mut px_fn: O) {
        let mut acc = 0.0;
        self.a[..self.width * self.height]
            .iter()
            .enumerate()
            .for_each(|(idx, c)| {
                acc += c;
                px_fn(idx, acc.abs().min(1.0));
            });
    }

    /// Run a callback for each pixel x position, y position & alpha.
    ///
    /// Convenience wrapper for `for_each_pixel`.
    ///
    /// ```
    /// # use ab_glyph_rasterizer::*;
    /// # let (width, height) = (1, 1);
    /// # let mut rasterizer = Rasterizer::new(width, height);
    /// # struct Img;
    /// # impl Img { fn set_pixel(&self, x: u32, y: u32, a: u8) {} }
    /// # let image = Img;
    /// rasterizer.for_each_pixel_2d(|x, y, alpha| {
    ///     image.set_pixel(x, y, (alpha * 255.0).round() as u8);
    /// });
    /// ```
    pub fn for_each_pixel_2d<O: FnMut(u32, u32, f32)>(&self, mut px_fn: O) {
        let width32 = self.width as u32;
        self.for_each_pixel(|idx, alpha| px_fn(idx as u32 % width32, idx as u32 / width32, alpha));
    }
}

/// ```
/// let rasterizer = ab_glyph_rasterizer::Rasterizer::new(3, 4);
/// assert_eq!(&format!("{:?}", rasterizer), "Rasterizer { width: 3, height: 4 }");
/// ```
impl core::fmt::Debug for Rasterizer {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("Rasterizer")
            .field("width", &self.width)
            .field("height", &self.height)
            .finish()
    }
}