1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! This module was created in order to keep the `graph` module clean and focused upon the
//! **Graph** data structure behaviour.
//!
//! This module hosts more complex algorithms in which the **Graph** is a key component in
//! producing the desired result.


use daggy::Walker;
use position::{Point, Rect};
use fnv;
use super::{EdgeIndex, Graph};
use theme::Theme;
use widget;


/// A node "walker" that yields all widgets under the given `xy` position in order from top to
/// bottom.
#[derive(Clone)]
#[allow(missing_copy_implementations)]
pub struct PickWidgets {
    xy: Point,
    idx: usize,
}

/// A node "walker" that yields all scrollable widgets under the given `xy` position in order from
/// top to bottom.
#[derive(Clone)]
#[allow(missing_copy_implementations)]
pub struct PickScrollableWidgets {
    pick_widgets: PickWidgets,
}


impl PickWidgets {

    /// The next `widget::Id` under the `xy` location.
    ///
    /// Unlike the `PickWidgets::next` method, this method ignores whether or not the next widget
    /// is a `Graphics` child to some other widget.
    ///
    /// This is called within `PickWidgets::next`.
    pub fn next_including_graphics_children(
        &mut self,
        graph: &Graph,
        depth_order: &[widget::Id],
        theme: &Theme,
    ) -> Option<widget::Id> {
        while self.idx > 0 {
            self.idx -= 1;
            let idx = match depth_order.get(self.idx) {
                None => break,
                Some(&idx) => idx,
            };
            let visible_rect = match cropped_area_of_widget(graph, idx) {
                None => continue,
                Some(rect) => rect,
            };
            if !visible_rect.is_over(self.xy) {
                continue;
            }
            // Now that we know we're over the bounding box, we can check the more
            // detailed widget-specific `is_over` function.
            let mut id = idx;
            loop {
                let container = match graph.widget(id) {
                    None => break,
                    Some(container) => container,
                };
                match (container.is_over.0)(&container, self.xy, theme) {
                    widget::IsOver::Bool(false) => break,
                    widget::IsOver::Bool(true) => return Some(id),
                    widget::IsOver::Widget(w_id) => {
                        assert!(id != w_id, "the specified IsOver::Widget \
                                             would cause an infinite loop");
                        id = w_id;
                    },
                }
            }
        }
        None
    }

    /// The `widget::Id` of the next `Widget` under the `xy` location.
    ///
    /// The `Graph` is traversed from the top down.
    ///
    /// If the next widget is some graphic element of another widget, the graphic parent will be
    /// returned.
    pub fn next(
        &mut self,
        graph: &Graph,
        depth_order: &[widget::Id],
        theme: &Theme,
    ) -> Option<widget::Id> {
        self.next_including_graphics_children(graph, depth_order, theme)
            .map(|idx| {
                // Ensure that if we've picked some widget that is a **Graphic** child of some
                // other widget, we return the **Graphic** parent.
                graph.graphic_parent_recursion(idx)
                    .last_node(graph)
                    .unwrap_or(idx)
            })
    }

}

impl PickScrollableWidgets {

    /// The `widget::Id` of the next scrollable `Widget` under the `xy` location.
    ///
    /// The `Graph` is traversed from the top down.
    pub fn next(
        &mut self,
        graph: &Graph,
        depth_order: &[widget::Id],
        theme: &Theme,
    ) -> Option<widget::Id> {
        while let Some(idx) = self.pick_widgets.next_including_graphics_children(graph, depth_order, theme) {
            if let Some(ref container) = graph.widget(idx) {
                if container.maybe_x_scroll_state.is_some()
                || container.maybe_y_scroll_state.is_some() {
                    return Some(idx)
                }
            }
        }
        None
    }

}


/// Produces a graph node "walker" that yields all widgets under the given `xy` position in order
/// from top to bottom.
pub fn pick_widgets(depth_order: &[widget::Id], xy: Point) -> PickWidgets {
    PickWidgets {
        xy: xy,
        idx: depth_order.len(),
    }
}

/// Produces a graph node "walker" that yields all scrollable widgets under the given `xy` position
/// in order from top to bottom.
pub fn pick_scrollable_widgets(depth_order: &[widget::Id], xy: Point) -> PickScrollableWidgets {
    PickScrollableWidgets {
        pick_widgets: pick_widgets(depth_order, xy),
    }
}


/// The rectangle that represents the maximum visible area for the widget with the given index.
///
/// Specifically, this considers the cropped scroll area for all parents.
///
/// Otherwise, return None if the widget is hidden.
pub fn cropped_area_of_widget(graph: &Graph, idx: widget::Id) -> Option<Rect> {
    cropped_area_of_widget_maybe_within_depth(graph, idx, None)
}


/// The rectangle that represents the maximum visible area for the widget with the given index.
///
/// This specifically considers the cropped scroll area for all parents until (and not including)
/// the deepest_parent_idx is reached.
///
/// Otherwise, return None if the widget is hidden.
pub fn cropped_area_of_widget_within_depth(graph: &Graph,
                                           idx: widget::Id,
                                           deepest_parent_idx: widget::Id) -> Option<Rect>
{
    cropped_area_of_widget_maybe_within_depth(graph, idx, Some(deepest_parent_idx))
}


/// Logic shared between the `cropped_area_of_widget` and `cropped_area_of_widget_within_depth`
/// functions.
fn cropped_area_of_widget_maybe_within_depth(graph: &Graph,
                                             mut id: widget::Id,
                                             deepest_id: Option<widget::Id>) -> Option<Rect>
{
    graph.widget(id).and_then(|widget| {
        let mut overlapping_rect = widget.rect;
        let mut depth_parents = graph.depth_parent_recursion(id);
        while let Some(depth_parent) = depth_parents.next_node(graph) {

            // If the parent's index matches that of the deepest, we're done.
            if Some(depth_parent) == deepest_id {
                break;
            }

            // Check to see if our parent is a scrollable widget and whether or not we need to
            // update the overlap.
            //
            // TODO: Consider "cropped area" here once implemented instead of scrolling.
            if let Some(depth_parent_widget) = graph.widget(depth_parent) {
                if depth_parent_widget.maybe_x_scroll_state.is_some()
                || depth_parent_widget.maybe_y_scroll_state.is_some() {

                    // If the depth_parent is also a **Graphic** parent, there is no need to
                    // calculate overlap as the child is a graphical element of the parent and
                    // thus is not cropped to it.
                    if !graph.does_graphic_edge_exist(depth_parent, id) {
                        match overlapping_rect.overlap(depth_parent_widget.kid_area.rect) {
                            Some(overlap) => overlapping_rect = overlap,
                            None => return None,
                        }
                    }
                }
            }

            // Set the current parent as the new child.
            id = depth_parent;
        }

        Some(overlapping_rect)
    })
}


/// Find the absolute `Rect` that bounds all widgets that are `Depth` children of the widget at the
/// given `idx`.
///
/// FIXME: This currently uses call stack recursion to do a depth-first search through all
/// depth_children for the total bounding box. This should use a proper `Dfs` type with it's own
/// stack for safer traversal that won't blow the stack on hugely deep GUIs.
pub fn kids_bounding_box(graph: &Graph,
                         prev_updated: &fnv::FnvHashSet<widget::Id>,
                         idx: widget::Id) -> Option<Rect>
{
    // When traversing the `depth_kids`, we only want to visit those who:
    // - are not also graphic kid widgets.
    // - are currently active within the `Ui`. In other words, they *were* updated during the last
    // call to `Ui::set_widgets`.
    let kid_filter = &|g: &Graph, _e, n| -> bool {
        let is_not_graphic_kid = !g.graphic_parent(n).is_some();
        let is_set = prev_updated.contains(&n);
        is_not_graphic_kid && is_set
    };

    // A function for doing a recursive depth-first search through all depth kids that satisfy the
    // `kid_filter` (see above) in order to find the maximum "bounding box".
    fn kids_dfs<F>(graph: &Graph,
                   idx: widget::Id,
                   deepest_parent_idx: widget::Id,
                   kid_filter: &F) -> Option<Rect>
        where F: Fn(&Graph, EdgeIndex, widget::Id) -> bool,
    {
        // If we're given some deepest parent index, we must only use the visible area within
        // the depth range that approaches it.
        cropped_area_of_widget_within_depth(graph, idx, deepest_parent_idx).map(|rect| {

            // An iterator yielding the bounding_box returned by each of our children.
            let kids_bounds = graph.depth_children(idx).filter(kid_filter).iter(graph).nodes()
                .filter_map(|n| kids_dfs(graph, n, deepest_parent_idx, kid_filter));

            kids_bounds.fold(rect, |max, next| max.max(next))
        })
    }

    graph.widget(idx).and_then(|_| {

        // An iterator yielding the bounding_box returned by each of our children.
        let mut kids_bounds = graph.depth_children(idx).filter(kid_filter).iter(graph).nodes()
            .filter_map(|n| kids_dfs(graph, n, idx, kid_filter));

        kids_bounds.next().map(|first| {
            kids_bounds.fold(first, |max, next| max.max(next))
        })
    })
}


/// Return the `scroll_offset` for the widget at the given index.
///
/// The offset is retrieved from the widget that is the immediate `depth_parent` of the widget at
/// the given `idx` unless:
///
/// - the immediate `depth_parent` of `idx` is also a `graphic_parent` to `idx`. In this case,
/// `NO_OFFSET` will be returned, as child widgets that are graphical elements of their parents
/// should not be affected by scrolling.
/// - one of the position parents also has the same `depth_parent`. In this case, `NO_OFFSET` will
/// be returned, as we know that our scroll offset has already been applied via the widget to which
/// we are relatively positioned.
pub fn scroll_offset(graph: &Graph, idx: widget::Id) -> Point {
    const NO_OFFSET: Point = [0.0, 0.0];

    if let Some(depth_parent) = graph.depth_parent(idx) {
        if let Some(depth_parent_widget) = graph.widget(depth_parent) {
            if depth_parent_widget.maybe_x_scroll_state.is_some()
            || depth_parent_widget.maybe_y_scroll_state.is_some() {

                // If our depth parent is also a graphic parent, we don't want any offset.
                if graph.graphic_parent_recursion(idx)
                    .any(graph, |_g, _e, n| n == depth_parent)
                {
                    return NO_OFFSET;
                }

                // If we have a position_parent along the axis whose depth_parent is the same
                // as ours, then the offset has already been applied via our relative
                // positioning.
                let is_already_offset = |mut position_parents: super::RecursiveWalk<_>| {
                    while let Some(position_parent) = position_parents.next_node(graph) {
                        if graph.depth_parent_recursion(position_parent)
                            .any(graph, |_g, _e, n| n == depth_parent)
                        {
                            return true;
                        }
                    }
                    false
                };

                let x_offset = depth_parent_widget.maybe_x_scroll_state.map(|scroll| {
                    let position_parents = graph.x_position_parent_recursion(idx);
                    if is_already_offset(position_parents) { 0.0 } else { scroll.offset }
                }).unwrap_or(0.0);

                let y_offset = depth_parent_widget.maybe_y_scroll_state.map(|scroll| {
                    let position_parents = graph.y_position_parent_recursion(idx);
                    if is_already_offset(position_parents) { 0.0 } else { scroll.offset }
                }).unwrap_or(0.0);

                return [x_offset, y_offset];
            }
        }
    }

    NO_OFFSET
}