1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
//! A default container widget to use for nodes that exist within a `Graph` widget.

use {widget, color, Color, Point, Positionable, Scalar, Sizeable, Widget, Ui};
use graph;
use position::{Axis, Direction, Range, Rect};
use std::iter::once;
use std::ops::{Deref, DerefMut};

/// A widget that acts as a convenience container for some `Node`'s unique widgets.
#[derive(Clone, Debug, WidgetCommon_)]
pub struct Node<W> {
    /// Data necessary and common for all widget builder types.
    #[conrod(common_builder)]
    pub common: widget::CommonBuilder,
    /// Unique styling for the **Node**.
    pub style: Style,
    /// The widget wrapped by this node container.
    pub widget: W,
    /// The number of input sockets on the node.
    pub inputs: usize,
    /// The number of output sockets on the node.
    pub outputs: usize,
}

#[allow(missing_docs)]
pub const DEFAULT_BORDER_THICKNESS: Scalar = 6.0;
#[allow(missing_docs)]
pub const DEFAULT_SOCKET_LENGTH: Scalar = DEFAULT_BORDER_THICKNESS;

/// Unique styling for the **BorderedRectangle** widget.
#[derive(Copy, Clone, Debug, Default, PartialEq, WidgetStyle_)]
pub struct Style {
    /// Shape color for the inner rectangle.
    #[conrod(default = "color::TRANSPARENT")]
    pub color: Option<Color>,
    /// The length of each rectangle along its `SocketSide`.
    #[conrod(default = "6.0")]
    pub socket_length: Option<Scalar>,
    /// The widget of the border around the widget.
    ///
    /// this should always be a positive value in order for sockets to remain visible.
    #[conrod(default = "6.0")]
    pub border: Option<Scalar>,
    /// The radius of the rounded corners of the border.
    ///
    /// This value will be clamped to the `border` thickness.
    ///
    /// A value of `0.0` gives square corners.
    #[conrod(default = "6.0")]
    pub border_radius: Option<Scalar>,
    /// Color of the border.
    #[conrod(default = "color::DARK_CHARCOAL")]
    pub border_color: Option<Color>,
    /// Color of the sockets.
    #[conrod(default = "color::DARK_GREY")]
    pub socket_color: Option<Color>,
    /// Default layout for input sockets.
    #[conrod(default = "SocketLayout { side: SocketSide::Left, direction: Direction::Backwards }")]
    pub input_socket_layout: Option<SocketLayout>,
    /// Default layout for node output sockets.
    #[conrod(default = "SocketLayout { side: SocketSide::Right, direction: Direction::Backwards }")]
    pub output_socket_layout: Option<SocketLayout>,
}

/// Describes the layout of either input or output sockets.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SocketLayout {
    /// Represents the side of a node widget's bounding rectangle.
    pub side: SocketSide,
    /// The direction in which sockets will be laid out over the side.
    pub direction: Direction,
}

/// Represents the side of a node widget's bounding rectangle.
///
/// This is used to describe default node socket layout.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum SocketSide {
    Left,
    Right,
    Top,
    Bottom,
}

widget_ids! {
    struct Ids {
        // Use triangles to describe graphics for the entire widget.
        //
        // The `Node` widget will be used a lot, so the less `widget::Id`s required the better.
        //
        // Triangulation order is as follows:
        //
        // 1. Inner rectangle surface (two triangles).
        // 2. Border (eight triangles).
        // 3. Sockets (two triangles per socket).
        triangles,
        // The unique identifier for the wrapped widget.
        widget,
    }
}

/// Unique state for the `Node`.
pub struct State {
    ids: Ids,
    // Tracks whether or not a socket is currently captured under the mouse.
    capturing_socket: Option<(SocketType, usize)>,
    // The number of input sockets.
    inputs: usize,
    // The number of output sockets.
    outputs: usize,
}

/// Describes whether a socket is associated with a node's inputs or outputs.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum SocketType { Input, Output }

/// The event produced by the `Node` widget.
#[derive(Clone, Debug)]
pub struct Event<W> {
    /// The event produced by the inner widget `W`.
    pub widget_event: W,
}

impl<W> Node<W> {
    /// Begin building a new `Node` widget.
    pub fn new(widget: W) -> Self {
        Node {
            common: widget::CommonBuilder::default(),
            style: Style::default(),
            widget,
            inputs: 0,
            outputs: 0,
        }
    }

    /// Specify the number of input sockets for the node.
    pub fn inputs(mut self, inputs: usize) -> Self {
        self.inputs = inputs;
        self
    }

    /// Specify the number of output sockets for the node.
    pub fn outputs(mut self, outputs: usize) -> Self {
        self.outputs = outputs;
        self
    }

    /// Specify the color for the node's inner rectangle.
    pub fn color(mut self, color: Color) -> Self {
        self.style.color = Some(color);
        self
    }

    /// The thickness of the border around the inner widget.
    ///
    /// This must always be a positive value in order for sockets to remain visible.
    pub fn border_thickness(mut self, thickness: Scalar) -> Self {
        assert!(thickness > 0.0);
        self.style.border = Some(thickness);
        self
    }

    /// Specify the color for the node's border.
    pub fn border_color(mut self, color: Color) -> Self {
        self.style.border_color = Some(color);
        self
    }

    /// Specify the radius for the node's border.
    pub fn border_radius(mut self, radius: Scalar) -> Self {
        self.style.border_radius = Some(radius);
        self
    }

    /// Specify the color for the node's sockets.
    pub fn socket_color(mut self, color: Color) -> Self {
        self.style.socket_color = Some(color);
        self
    }

    /// Specify the layout of the input sockets.
    pub fn input_socket_layout(mut self, layout: SocketLayout) -> Self {
        self.style.input_socket_layout = Some(layout);
        self
    }

    /// Specify the layout of the input sockets.
    pub fn output_socket_layout(mut self, layout: SocketLayout) -> Self {
        self.style.output_socket_layout = Some(layout);
        self
    }
}

impl<W> Deref for Event<W> {
    type Target = W;
    fn deref(&self) -> &Self::Target {
        &self.widget_event
    }
}

impl<W> DerefMut for Event<W> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.widget_event
    }
}


// A multiplier for the scalar direction.
fn direction_scalar(direction: Direction) -> Scalar {
    match direction {
        Direction::Forwards => 1.0,
        Direction::Backwards => -1.0,
    }
}

// Axis from a given side and the scalar offset from the centre of the rect.
fn side_axis_and_scalar(rect: Rect, side: SocketSide, border: Scalar) -> (Axis, Scalar) {
    match side {
        SocketSide::Left => (Axis::Y, rect.left() + border / 2.0),
        SocketSide::Right => (Axis::Y, rect.right() - border / 2.0),
        SocketSide::Bottom => (Axis::X, rect.bottom() + border / 2.0),
        SocketSide::Top => (Axis::X, rect.top() - border / 2.0),
    }
}

// The position of the socket at the given index.
fn socket_position(index: usize, start_pos: Point, step: [Scalar; 2]) -> Point {
    let x = start_pos[0] + step[0] * index as Scalar;
    let y = start_pos[1] + step[1] * index as Scalar;
    [x, y]
}

// Dimensions for a socket rectangle given some axis.
fn socket_rect_dim(axis: Axis, border: Scalar, socket_length: Scalar) -> [Scalar; 2] {
    match axis {
        Axis::Y => [border, socket_length],
        Axis::X => [socket_length, border],
    }
}

// Returns the range along the rect for the given axis.
fn rect_range(axis: Axis, rect: Rect) -> Range {
    match axis {
        Axis::X => rect.x,
        Axis::Y => rect.y,
    }
}

// The gap between each socket and the position of the first socket.
fn socket_step_and_start(
    n_sockets: usize,
    axis: Axis,
    direction: Direction,
    inner_rect: Rect,
    socket_length: Scalar,
    side_scalar: Scalar,
) -> ([Scalar; 2], Point)
{
    let direction_scalar = direction_scalar(direction);
    let socket_range = rect_range(axis, inner_rect);
    let socket_position_range = socket_range.pad(socket_length / 2.0);
    let socket_start_scalar = match direction {
        Direction::Forwards => socket_position_range.start,
        Direction::Backwards => socket_position_range.end,
    };
    let step = if n_sockets > 1 {
        socket_position_range.len() * direction_scalar / (n_sockets - 1) as Scalar
    } else {
        0.0
    };
    let (step, socket_start_position) = match axis {
        Axis::X => {
            let step = [step, 0.0];
            let x = socket_start_scalar;
            let y = side_scalar;
            (step, [x, y])
        },
        Axis::Y => {
            let step = [0.0, step];
            let x = side_scalar;
            let y = socket_start_scalar;
            (step, [x, y])
        },
    };
    (step, socket_start_position)
}

// Produce the `Rect` for a socket from the raw params required.
fn socket_rectangle(
    index: usize,
    n_sockets: usize,
    node_rect: Rect,
    border: Scalar,
    layout: SocketLayout,
    socket_length: Scalar,
) -> Rect {
    let SocketLayout { side, direction } = layout;
    let (axis, side_scalar) = side_axis_and_scalar(node_rect, side, border);
    let inner_rect = node_rect.pad(border);
    let (step, start_pos) = socket_step_and_start(n_sockets, axis, direction, inner_rect,
                                                  socket_length, side_scalar);
    let xy = socket_position(index, start_pos, step);
    let socket_dim = socket_rect_dim(axis, border, socket_length);
    let rect = Rect::from_xy_dim(xy, socket_dim);
    rect
}


/// Retrieve the `Rect` for the given socket on the given node.
///
/// Returns `None` if there is no node for the given `Id` or if the `socket_index` is out of range.
pub fn socket_rect(
    node_id: widget::Id,
    socket_type: SocketType,
    socket_index: usize,
    ui: &Ui,
) -> Option<Rect> {
    ui.widget_graph()
        .widget(node_id)
        .and_then(|container| {
            let unique = container.state_and_style::<State, Style>();
            let &graph::UniqueWidgetState { ref state, ref style } = match unique {
                None => return None,
                Some(unique) => unique,
            };
            let rect = container.rect;
            let border = style.border(&ui.theme);
            let socket_length = style.socket_length(&ui.theme);

            let (n_sockets, layout) = match socket_type {
                SocketType::Input => (state.inputs, style.input_socket_layout(&ui.theme)),
                SocketType::Output => (state.outputs, style.output_socket_layout(&ui.theme)),
            };

            let rect = socket_rectangle(socket_index, n_sockets, rect, border, layout,
                                        socket_length);
            Some(rect)
        })
}

/// Returns a `Rect` for an edge's start and end nodes.
pub fn edge_socket_rects<NI>(edge: &super::Edge<NI>, ui: &Ui) -> (Rect, Rect)
where
    NI: super::NodeId,
{
    let (start_id, end_id) = super::edge_node_widget_ids(edge, ui);
    let start = edge.start();
    let end = edge.end();
    let start_rect = socket_rect(start_id, SocketType::Output, start.socket_index, ui)
        .expect("no node widget found for the edge's `start_id`");
    let end_rect = socket_rect(end_id, SocketType::Input, end.socket_index, ui)
        .expect("no node widget found for the edge's `end_id`");
    (start_rect, end_rect)
}

/// Produces an iterator yielding a `Rect` for each socket for both inputs and outputs
/// respectively.
///
/// Returns `None` if no node is found for the given `widget::Id`.
pub fn socket_rects(node_id: widget::Id, ui: &Ui) -> Option<(SocketRects, SocketRects)> {
    ui.widget_graph()
        .widget(node_id)
        .and_then(|container| {
            let unique = container.state_and_style::<State, Style>();
            let &graph::UniqueWidgetState { ref state, ref style } = match unique {
                None => return None,
                Some(unique) => unique,
            };
            let rect = container.rect;
            let border = style.border(&ui.theme);
            let socket_length = style.socket_length(&ui.theme);
            let input_socket_rects = SocketRects {
                index: 0,
                n_sockets: state.inputs,
                node_rect: rect,
                border,
                layout: style.input_socket_layout(&ui.theme),
                socket_length,
            };
            let output_socket_rects = SocketRects {
                index: 0,
                n_sockets: state.outputs,
                node_rect: rect,
                border,
                layout: style.output_socket_layout(&ui.theme),
                socket_length,
            };
            Some((input_socket_rects, output_socket_rects))
        })
}

/// The rectangle for each socket (either inputs or outputs only).
#[derive(Clone)]
#[allow(missing_copy_implementations)]
pub struct SocketRects {
    // Current socket index.
    index: usize,
    // Total number of sockets.
    n_sockets: usize,
    node_rect: Rect,
    border: Scalar,
    layout: SocketLayout,
    // The length of the socket rectangle along the axis along which it is placed.
    socket_length: Scalar,
}

impl Iterator for SocketRects {
    type Item = Rect;
    fn next(&mut self) -> Option<Self::Item> {
        let SocketRects {
            ref mut index,
            n_sockets,
            node_rect,
            border,
            layout,
            socket_length,
        } = *self;

        // If the index is equal to or greater than the number of sockets, we're done.
        if *index >= n_sockets {
            return None;
        }

        let rect = socket_rectangle(*index, n_sockets, node_rect, border, layout, socket_length);
        *index += 1;
        Some(rect)
    }
}

impl<W> Widget for Node<W>
where
    W: Widget,
{
    type State = State;
    type Style = Style;
    type Event = Event<W::Event>;

    fn init_state(&self, id_gen: widget::id::Generator) -> Self::State {
        State {
            ids: Ids::new(id_gen),
            capturing_socket: None,
            inputs: self.inputs,
            outputs: self.outputs,
        }
    }

    fn style(&self) -> Self::Style {
        self.style.clone()
    }

    fn update(self, args: widget::UpdateArgs<Self>) -> Self::Event {
        let widget::UpdateArgs { id, state, style, rect, ui, .. } = args;
        let Node { widget, inputs, outputs, .. } = self;
        let socket_length = style.socket_length(&ui.theme);
        let border = style.border(&ui.theme);

        if state.inputs != inputs {
            state.update(|state| state.inputs = inputs);
        }

        if state.outputs != outputs {
            state.update(|state| state.outputs = outputs);
        }

        let input_socket_layout = style.input_socket_layout(&ui.theme);
        let output_socket_layout = style.output_socket_layout(&ui.theme);

        // A function for producing the rectangles of sockets along some axis.
        let socket_rectangles = |n_sockets, layout| {
            SocketRects {
                index: 0,
                n_sockets,
                layout,
                node_rect: rect,
                border,
                socket_length,
            }
        };

        // Whether or not the given point is over a socket.
        let over_socket = |abs_point: Point| -> Option<(SocketType, usize)> {
            for (i, rect) in socket_rectangles(inputs, input_socket_layout).enumerate() {
                if rect.is_over(abs_point) {
                    return Some((SocketType::Input, i));
                }
            }
            for (i, rect) in socket_rectangles(outputs, output_socket_layout).enumerate() {
                if rect.is_over(abs_point) {
                    return Some((SocketType::Output, i));
                }
            }
            None
        };

        #[derive(Copy, Clone)]
        enum Interaction { Hover, Press }
        let maybe_socket_interaction = ui.widget_input(id)
            .mouse()
            .and_then(|m| match m.buttons.left().is_down() {
                // If the mouse isn't down, we must be hovering over the widget.
                false => over_socket(m.abs_xy()).map(|(ty, ix)| (ty, ix, Interaction::Hover)),
                // Otherwise we're currently pressing some part of the widget.
                true => {
                    // If the left mouse button was just pressed, check to see if over a socket.
                    if ui.widget_input(id).presses().mouse().left().next().is_some() {
                        let maybe_socket = over_socket(m.abs_xy());
                        if maybe_socket.is_some() {
                            state.update(|state| state.capturing_socket = maybe_socket);
                        }
                    }
                    // If some socket is captured by the mouse, it's pressed.
                    state.capturing_socket.map(|(ty, ix)| (ty, ix, Interaction::Press))
                },
            });

        // The triangles for the inner rectangle surface first.
        let inner_rect = rect.pad(border);
        let (inner_tri_a, inner_tri_b) = widget::primitive::shape::rectangle::triangles(inner_rect);
        let inner_color = style.color(&ui.theme).into();
        let inner_triangles = once(inner_tri_a)
            .chain(once(inner_tri_b))
            .map(|tri| tri.color_all(inner_color));

        // Triangles for the border.
        //
        // Color the border based on interaction.
        let border_color = style.border_color(&ui.theme);
        let border_color = match maybe_socket_interaction.is_some() {
            true => border_color,
            false => {
                ui.widget_input(id)
                    .mouse()
                    .map(|m| match inner_rect.is_over(m.abs_xy()) {
                        true => border_color,
                        false => match m.buttons.left().is_down() {
                            true => border_color.clicked(),
                            false => border_color.highlighted(),
                        },
                    })
                    .unwrap_or(border_color)
            },
        };

        let border_radius = style.border_radius(&ui.theme).min(border);
        let border_triangles = widget::bordered_rectangle::rounded_border_triangles(
            rect,
            border,
            border_radius,
            widget::oval::DEFAULT_RESOLUTION,
        );
        let border_rgba = border_color.into();
        let border_triangles = border_triangles.map(|tri| tri.color_all(border_rgba));

        // A function for producing the triangles for sockets along some axis.
        let socket_color = style.socket_color(&ui.theme);
        let socket_triangles = |socket_type, n_sockets, layout| {
            socket_rectangles(n_sockets, layout)
                .enumerate()
                .flat_map(move |(i, rect)| {
                    let (tri_a, tri_b) = widget::primitive::shape::rectangle::triangles(rect);
                    let color = match maybe_socket_interaction {
                        Some((ty, ix, action)) if ty == socket_type && ix == i => match action {
                            Interaction::Hover => socket_color.highlighted(),
                            Interaction::Press => socket_color.clicked(),
                        },
                        _ => socket_color,
                    };
                    let rgba = color.into();
                    let a = tri_a.color_all(rgba);
                    let b = tri_b.color_all(rgba);
                    once(a).chain(once(b))
                })
        };

        // Triangles for sockets.
        let input_socket_triangles = socket_triangles(SocketType::Input, inputs, input_socket_layout);
        let output_socket_triangles = socket_triangles(SocketType::Output, outputs, output_socket_layout);

        // Submit the triangles for the graphical elements of the widget.
        let triangles = inner_triangles
            .chain(border_triangles)
            .chain(input_socket_triangles)
            .chain(output_socket_triangles);
        widget::Triangles::multi_color(triangles)
            .with_bounding_rect(rect)
            .graphics_for(id)
            .parent(id)
            .set(state.ids.triangles, ui);

        // Instantiate the widget.
        let widget_event = widget
            .wh(inner_rect.dim())
            .xy(inner_rect.xy())
            .parent(id)
            .set(state.ids.widget, ui);

        Event { widget_event }
    }
}