Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
use std::fmt;
use std::marker::PhantomData;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::{Arc, Condvar, Mutex};
use std::time::Duration;

/// A thread parking primitive.
///
/// Conceptually, each `Parker` has an associated token which is initially not present:
///
/// * The [`park`] method blocks the current thread unless or until the token is available, at
///   which point it automatically consumes the token. It may also return *spuriously*, without
///   consuming the token.
///
/// * The [`park_timeout`] method works the same as [`park`], but blocks for a specified maximum
///   time.
///
/// * The [`unpark`] method atomically makes the token available if it wasn't already. Because the
///   token is initially absent, [`unpark`] followed by [`park`] will result in the second call
///   returning immediately.
///
/// In other words, each `Parker` acts a bit like a spinlock that can be locked and unlocked using
/// [`park`] and [`unpark`].
///
/// # Examples
///
/// ```
/// use std::thread;
/// use std::time::Duration;
/// use crossbeam_utils::sync::Parker;
///
/// let mut p = Parker::new();
/// let u = p.unparker().clone();
///
/// // Make the token available.
/// u.unpark();
/// // Wakes up immediately and consumes the token.
/// p.park();
///
/// thread::spawn(move || {
///     thread::sleep(Duration::from_millis(500));
///     u.unpark();
/// });
///
/// // Wakes up when `u.unpark()` provides the token, but may also wake up
/// // spuriously before that without consuming the token.
/// p.park();
/// ```
///
/// [`park`]: struct.Parker.html#method.park
/// [`park_timeout`]: struct.Parker.html#method.park_timeout
/// [`unpark`]: struct.Unparker.html#method.unpark
pub struct Parker {
    unparker: Unparker,
    _marker: PhantomData<*const ()>,
}

unsafe impl Send for Parker {}

impl Parker {
    /// Creates a new `Parker`.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let p = Parker::new();
    /// ```
    ///
    pub fn new() -> Parker {
        Parker {
            unparker: Unparker {
                inner: Arc::new(Inner {
                    state: AtomicUsize::new(EMPTY),
                    lock: Mutex::new(()),
                    cvar: Condvar::new(),
                }),
            },
            _marker: PhantomData,
        }
    }

    /// Blocks the current thread until the token is made available.
    ///
    /// A call to `park` may wake up spuriously without consuming the token, and callers should be
    /// prepared for this possibility.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    /// let u = p.unparker().clone();
    ///
    /// // Make the token available.
    /// u.unpark();
    ///
    /// // Wakes up immediately and consumes the token.
    /// p.park();
    /// ```
    pub fn park(&self) {
        self.unparker.inner.park(None);
    }

    /// Blocks the current thread until the token is made available, but only for a limited time.
    ///
    /// A call to `park_timeout` may wake up spuriously without consuming the token, and callers
    /// should be prepared for this possibility.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    ///
    /// // Waits for the token to become available, but will not wait longer than 500 ms.
    /// p.park_timeout(Duration::from_millis(500));
    /// ```
    pub fn park_timeout(&self, timeout: Duration) {
        self.unparker.inner.park(Some(timeout));
    }

    /// Returns a reference to an associated [`Unparker`].
    ///
    /// The returned [`Unparker`] doesn't have to be used by reference - it can also be cloned.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    /// let u = p.unparker().clone();
    ///
    /// // Make the token available.
    /// u.unpark();
    /// // Wakes up immediately and consumes the token.
    /// p.park();
    /// ```
    ///
    /// [`park`]: struct.Parker.html#method.park
    /// [`park_timeout`]: struct.Parker.html#method.park_timeout
    ///
    /// [`Unparker`]: struct.Unparker.html
    pub fn unparker(&self) -> &Unparker {
        &self.unparker
    }
}

impl fmt::Debug for Parker {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad("Parker { .. }")
    }
}

/// Unparks a thread parked by the associated [`Parker`].
///
/// [`Parker`]: struct.Parker.html
pub struct Unparker {
    inner: Arc<Inner>,
}

unsafe impl Send for Unparker {}
unsafe impl Sync for Unparker {}

impl Unparker {
    /// Atomically makes the token available if it is not already.
    ///
    /// This method will wake up the thread blocked on [`park`] or [`park_timeout`], if there is
    /// any.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::thread;
    /// use std::time::Duration;
    /// use crossbeam_utils::sync::Parker;
    ///
    /// let mut p = Parker::new();
    /// let u = p.unparker().clone();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(500));
    ///     u.unpark();
    /// });
    ///
    /// // Wakes up when `u.unpark()` provides the token, but may also wake up
    /// // spuriously before that without consuming the token.
    /// p.park();
    /// ```
    ///
    /// [`park`]: struct.Parker.html#method.park
    /// [`park_timeout`]: struct.Parker.html#method.park_timeout
    pub fn unpark(&self) {
        self.inner.unpark()
    }
}

impl fmt::Debug for Unparker {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad("Unparker { .. }")
    }
}

impl Clone for Unparker {
    fn clone(&self) -> Unparker {
        Unparker {
            inner: self.inner.clone(),
        }
    }
}

const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;

struct Inner {
    state: AtomicUsize,
    lock: Mutex<()>,
    cvar: Condvar,
}

impl Inner {
    fn park(&self, timeout: Option<Duration>) {
        // If we were previously notified then we consume this notification and return quickly.
        if self
            .state
            .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
            .is_ok()
        {
            return;
        }

        // If the timeout is zero, then there is no need to actually block.
        if let Some(ref dur) = timeout {
            if *dur == Duration::from_millis(0) {
                return;
            }
        }

        // Otherwise we need to coordinate going to sleep.
        let mut m = self.lock.lock().unwrap();

        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            // Consume this notification to avoid spurious wakeups in the next park.
            Err(NOTIFIED) => {
                // We must read `state` here, even though we know it will be `NOTIFIED`. This is
                // because `unpark` may have been called again since we read `NOTIFIED` in the
                // `compare_exchange` above. We must perform an acquire operation that synchronizes
                // with that `unpark` to observe any writes it made before the call to `unpark`. To
                // do that we must read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);
                assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
                return;
            }
            Err(n) => panic!("inconsistent park_timeout state: {}", n),
        }

        match timeout {
            None => {
                loop {
                    // Block the current thread on the conditional variable.
                    m = self.cvar.wait(m).unwrap();

                    match self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) {
                        Ok(_) => return, // got a notification
                        Err(_) => {}     // spurious wakeup, go back to sleep
                    }
                }
            }
            Some(timeout) => {
                // Wait with a timeout, and if we spuriously wake up or otherwise wake up from a
                // notification we just want to unconditionally set `state` back to `EMPTY`, either
                // consuming a notification or un-flagging ourselves as parked.
                let (_m, _result) = self.cvar.wait_timeout(m, timeout).unwrap();

                match self.state.swap(EMPTY, SeqCst) {
                    NOTIFIED => {} // got a notification
                    PARKED => {}   // no notification
                    n => panic!("inconsistent park_timeout state: {}", n),
                }
            }
        }
    }

    pub fn unpark(&self) {
        // To ensure the unparked thread will observe any writes we made before this call, we must
        // perform a release operation that `park` can synchronize with. To do that we must write
        // `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather
        // than a compare-and-swap that returns if it reads `NOTIFIED` on failure.
        match self.state.swap(NOTIFIED, SeqCst) {
            EMPTY => return,    // no one was waiting
            NOTIFIED => return, // already unparked
            PARKED => {}        // gotta go wake someone up
            _ => panic!("inconsistent state in unpark"),
        }

        // There is a period between when the parked thread sets `state` to `PARKED` (or last
        // checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`.
        // If we were to notify during this period it would be ignored and then when the parked
        // thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this
        // stage so we can acquire `lock` to wait until it is ready to receive the notification.
        //
        // Releasing `lock` before the call to `notify_one` means that when the parked thread wakes
        // it doesn't get woken only to have to wait for us to release `lock`.
        drop(self.lock.lock().unwrap());
        self.cvar.notify_one();
    }
}