Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
use crate::enter;
use futures_core::future::Future;
use futures_core::stream::Stream;
use futures_core::task::{Context, Poll};
use futures_task::{waker_ref, ArcWake};
use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError};
use futures_util::pin_mut;
use futures_util::stream::FuturesUnordered;
use futures_util::stream::StreamExt;
use std::cell::RefCell;
use std::ops::{Deref, DerefMut};
use std::rc::{Rc, Weak};
use std::sync::{Arc, atomic::{AtomicBool, Ordering}};
use std::thread::{self, Thread};

/// A single-threaded task pool for polling futures to completion.
///
/// This executor allows you to multiplex any number of tasks onto a single
/// thread. It's appropriate to poll strictly I/O-bound futures that do very
/// little work in between I/O actions.
///
/// To get a handle to the pool that implements
/// [`Spawn`](futures_task::Spawn), use the
/// [`spawner()`](LocalPool::spawner) method. Because the executor is
/// single-threaded, it supports a special form of task spawning for non-`Send`
/// futures, via [`spawn_local_obj`](futures_task::LocalSpawn::spawn_local_obj).
#[derive(Debug)]
pub struct LocalPool {
    pool: FuturesUnordered<LocalFutureObj<'static, ()>>,
    incoming: Rc<Incoming>,
}

/// A handle to a [`LocalPool`](LocalPool) that implements
/// [`Spawn`](futures_task::Spawn).
#[derive(Clone, Debug)]
pub struct LocalSpawner {
    incoming: Weak<Incoming>,
}

type Incoming = RefCell<Vec<LocalFutureObj<'static, ()>>>;

pub(crate) struct ThreadNotify {
    /// The (single) executor thread.
    thread: Thread,
    /// A flag to ensure a wakeup (i.e. `unpark()`) is not "forgotten"
    /// before the next `park()`, which may otherwise happen if the code
    /// being executed as part of the future(s) being polled makes use of
    /// park / unpark calls of its own, i.e. we cannot assume that no other
    /// code uses park / unpark on the executing `thread`.
    unparked: AtomicBool,
}

thread_local! {
    static CURRENT_THREAD_NOTIFY: Arc<ThreadNotify> = Arc::new(ThreadNotify {
        thread: thread::current(),
        unparked: AtomicBool::new(false),
    });
}

impl ArcWake for ThreadNotify {
    fn wake_by_ref(arc_self: &Arc<Self>) {
        // Make sure the wakeup is remembered until the next `park()`.
        let unparked = arc_self.unparked.swap(true, Ordering::Relaxed);
        if !unparked {
            // If the thread has not been unparked yet, it must be done
            // now. If it was actually parked, it will run again,
            // otherwise the token made available by `unpark`
            // may be consumed before reaching `park()`, but `unparked`
            // ensures it is not forgotten.
            arc_self.thread.unpark();
        }
    }
}

// Set up and run a basic single-threaded spawner loop, invoking `f` on each
// turn.
fn run_executor<T, F: FnMut(&mut Context<'_>) -> Poll<T>>(mut f: F) -> T {
    let _enter = enter().expect(
        "cannot execute `LocalPool` executor from within \
         another executor",
    );

    CURRENT_THREAD_NOTIFY.with(|thread_notify| {
        let waker = waker_ref(thread_notify);
        let mut cx = Context::from_waker(&waker);
        loop {
            if let Poll::Ready(t) = f(&mut cx) {
                return t;
            }
            // Consume the wakeup that occurred while executing `f`, if any.
            let unparked = thread_notify.unparked.swap(false, Ordering::Acquire);
            if !unparked {
                // No wakeup occurred. It may occur now, right before parking,
                // but in that case the token made available by `unpark()`
                // is guaranteed to still be available and `park()` is a no-op.
                thread::park();
                // When the thread is unparked, `unparked` will have been set
                // and needs to be unset before the next call to `f` to avoid
                // a redundant loop iteration.
                thread_notify.unparked.store(false, Ordering::Release);
            }
        }
    })
}

fn poll_executor<T, F: FnMut(&mut Context<'_>) -> T>(mut f: F) -> T {
    let _enter = enter().expect(
        "cannot execute `LocalPool` executor from within \
         another executor",
    );

    CURRENT_THREAD_NOTIFY.with(|thread_notify| {
        let waker = waker_ref(thread_notify);
        let mut cx = Context::from_waker(&waker);
        f(&mut cx)
    })
}

impl LocalPool {
    /// Create a new, empty pool of tasks.
    pub fn new() -> LocalPool {
        LocalPool {
            pool: FuturesUnordered::new(),
            incoming: Default::default(),
        }
    }

    /// Get a clonable handle to the pool as a [`Spawn`].
    pub fn spawner(&self) -> LocalSpawner {
        LocalSpawner {
            incoming: Rc::downgrade(&self.incoming),
        }
    }

    /// Run all tasks in the pool to completion.
    ///
    /// ```
    /// use futures::executor::LocalPool;
    ///
    /// let mut pool = LocalPool::new();
    ///
    /// // ... spawn some initial tasks using `spawn.spawn()` or `spawn.spawn_local()`
    ///
    /// // run *all* tasks in the pool to completion, including any newly-spawned ones.
    /// pool.run();
    /// ```
    ///
    /// The function will block the calling thread until *all* tasks in the pool
    /// are complete, including any spawned while running existing tasks.
    pub fn run(&mut self) {
        run_executor(|cx| self.poll_pool(cx))
    }

    /// Runs all the tasks in the pool until the given future completes.
    ///
    /// ```
    /// use futures::executor::LocalPool;
    ///
    /// let mut pool = LocalPool::new();
    /// # let my_app  = async {};
    ///
    /// // run tasks in the pool until `my_app` completes
    /// pool.run_until(my_app);
    /// ```
    ///
    /// The function will block the calling thread *only* until the future `f`
    /// completes; there may still be incomplete tasks in the pool, which will
    /// be inert after the call completes, but can continue with further use of
    /// one of the pool's run or poll methods. While the function is running,
    /// however, all tasks in the pool will try to make progress.
    pub fn run_until<F: Future>(&mut self, future: F) -> F::Output {
        pin_mut!(future);

        run_executor(|cx| {
            {
                // if our main task is done, so are we
                let result = future.as_mut().poll(cx);
                if let Poll::Ready(output) = result {
                    return Poll::Ready(output);
                }
            }

            let _ = self.poll_pool(cx);
            Poll::Pending
        })
    }

    /// Runs all tasks and returns after completing one future or until no more progress
    /// can be made. Returns `true` if one future was completed, `false` otherwise.
    ///
    /// ```
    /// use futures::executor::LocalPool;
    /// use futures::task::LocalSpawnExt;
    /// use futures::future::{ready, pending};
    ///
    /// let mut pool = LocalPool::new();
    /// let spawner = pool.spawner();
    ///
    /// spawner.spawn_local(ready(())).unwrap();
    /// spawner.spawn_local(ready(())).unwrap();
    /// spawner.spawn_local(pending()).unwrap();
    ///
    /// // Run the two ready tasks and return true for them.
    /// pool.try_run_one(); // returns true after completing one of the ready futures
    /// pool.try_run_one(); // returns true after completing the other ready future
    ///
    /// // the remaining task can not be completed
    /// assert!(!pool.try_run_one()); // returns false
    /// ```
    ///
    /// This function will not block the calling thread and will return the moment
    /// that there are no tasks left for which progress can be made or after exactly one
    /// task was completed; Remaining incomplete tasks in the pool can continue with
    /// further use of one of the pool's run or poll methods.
    /// Though only one task will be completed, progress may be made on multiple tasks.
    pub fn try_run_one(&mut self) -> bool {
        poll_executor(|ctx| {
            loop {
                let ret = self.poll_pool_once(ctx);

                // return if we have executed a future
                if let Poll::Ready(Some(_)) = ret {
                    return true;
                }

                // if there are no new incoming futures
                // then there is no feature that can make progress
                // and we can return without having completed a single future
                if self.incoming.borrow().is_empty() {
                    return false;
                }
            }
        })
    }

    /// Runs all tasks in the pool and returns if no more progress can be made
    /// on any task.
    ///
    /// ```
    /// use futures::executor::LocalPool;
    /// use futures::task::LocalSpawnExt;
    /// use futures::future::{ready, pending};
    ///
    /// let mut pool = LocalPool::new();
    /// let spawner = pool.spawner();
    ///
    /// spawner.spawn_local(ready(())).unwrap();
    /// spawner.spawn_local(ready(())).unwrap();
    /// spawner.spawn_local(pending()).unwrap();
    ///
    /// // Runs the two ready task and returns.
    /// // The empty task remains in the pool.
    /// pool.run_until_stalled();
    /// ```
    ///
    /// This function will not block the calling thread and will return the moment
    /// that there are no tasks left for which progress can be made;
    /// remaining incomplete tasks in the pool can continue with further use of one
    /// of the pool's run or poll methods. While the function is running, all tasks
    /// in the pool will try to make progress.
    pub fn run_until_stalled(&mut self) {
        poll_executor(|ctx| {
            let _ = self.poll_pool(ctx);
        });
    }

    // Make maximal progress on the entire pool of spawned task, returning `Ready`
    // if the pool is empty and `Pending` if no further progress can be made.
    fn poll_pool(&mut self, cx: &mut Context<'_>) -> Poll<()> {
        // state for the FuturesUnordered, which will never be used
        loop {
            let ret = self.poll_pool_once(cx);

            // we queued up some new tasks; add them and poll again
            if !self.incoming.borrow().is_empty() {
                continue;
            }

            // no queued tasks; we may be done
            match ret {
                Poll::Pending => return Poll::Pending,
                Poll::Ready(None) => return Poll::Ready(()),
                _ => {}
            }
        }
    }

    // Try make minimal progress on the pool of spawned tasks
    fn poll_pool_once(&mut self, cx: &mut Context<'_>) -> Poll<Option<()>> {
        // empty the incoming queue of newly-spawned tasks
        {
            let mut incoming = self.incoming.borrow_mut();
            for task in incoming.drain(..) {
                self.pool.push(task)
            }
        }

        // try to execute the next ready future
        self.pool.poll_next_unpin(cx)
    }
}

impl Default for LocalPool {
    fn default() -> Self {
        Self::new()
    }
}

/// Run a future to completion on the current thread.
///
/// This function will block the caller until the given future has completed.
///
/// Use a [`LocalPool`](LocalPool) if you need finer-grained control over
/// spawned tasks.
pub fn block_on<F: Future>(f: F) -> F::Output {
    pin_mut!(f);
    run_executor(|cx| f.as_mut().poll(cx))
}

/// Turn a stream into a blocking iterator.
///
/// When `next` is called on the resulting `BlockingStream`, the caller
/// will be blocked until the next element of the `Stream` becomes available.
pub fn block_on_stream<S: Stream + Unpin>(stream: S) -> BlockingStream<S> {
    BlockingStream { stream }
}

/// An iterator which blocks on values from a stream until they become available.
#[derive(Debug)]
pub struct BlockingStream<S: Stream + Unpin> {
    stream: S,
}

impl<S: Stream + Unpin> Deref for BlockingStream<S> {
    type Target = S;
    fn deref(&self) -> &Self::Target {
        &self.stream
    }
}

impl<S: Stream + Unpin> DerefMut for BlockingStream<S> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.stream
    }
}

impl<S: Stream + Unpin> BlockingStream<S> {
    /// Convert this `BlockingStream` into the inner `Stream` type.
    pub fn into_inner(self) -> S {
        self.stream
    }
}

impl<S: Stream + Unpin> Iterator for BlockingStream<S> {
    type Item = S::Item;

    fn next(&mut self) -> Option<Self::Item> {
        LocalPool::new().run_until(self.stream.next())
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.stream.size_hint()
    }
}

impl Spawn for LocalSpawner {
    fn spawn_obj(&self, future: FutureObj<'static, ()>) -> Result<(), SpawnError> {
        if let Some(incoming) = self.incoming.upgrade() {
            incoming.borrow_mut().push(future.into());
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }

    fn status(&self) -> Result<(), SpawnError> {
        if self.incoming.upgrade().is_some() {
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }
}

impl LocalSpawn for LocalSpawner {
    fn spawn_local_obj(&self, future: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> {
        if let Some(incoming) = self.incoming.upgrade() {
            incoming.borrow_mut().push(future);
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }

    fn status_local(&self) -> Result<(), SpawnError> {
        if self.incoming.upgrade().is_some() {
            Ok(())
        } else {
            Err(SpawnError::shutdown())
        }
    }
}