Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
//! Futures
//!
//! This module contains a number of functions for working with `Future`s,
//! including the `FutureExt` trait which adds methods to `Future` types.

#[cfg(feature = "compat")]
use crate::compat::Compat;
use core::pin::Pin;
use futures_core::{
    future::TryFuture,
    stream::TryStream,
    task::{Context, Poll},
};
#[cfg(feature = "sink")]
use futures_sink::Sink;

use crate::fns::{
    inspect_err_fn, inspect_ok_fn, into_fn, map_err_fn, map_ok_fn, map_ok_or_else_fn,
    unwrap_or_else_fn, InspectErrFn, InspectOkFn, IntoFn, MapErrFn, MapOkFn, MapOkOrElseFn,
    UnwrapOrElseFn,
};
use crate::future::{assert_future, Inspect, Map};
use crate::stream::assert_stream;

// Combinators
mod into_future;
mod try_flatten;
mod try_flatten_err;

delegate_all!(
    /// Future for the [`try_flatten`](TryFutureExt::try_flatten) method.
    TryFlatten<Fut1, Fut2>(
        try_flatten::TryFlatten<Fut1, Fut2>
    ): Debug + Future + FusedFuture + New[|x: Fut1| try_flatten::TryFlatten::new(x)]
);

delegate_all!(
    /// Future for the [`try_flatten_err`](TryFutureExt::try_flatten_err) method.
    TryFlattenErr<Fut1, Fut2>(
        try_flatten_err::TryFlattenErr<Fut1, Fut2>
    ): Debug + Future + FusedFuture + New[|x: Fut1| try_flatten_err::TryFlattenErr::new(x)]
);

delegate_all!(
    /// Future for the [`try_flatten_stream`](TryFutureExt::try_flatten_stream) method.
    TryFlattenStream<Fut>(
        try_flatten::TryFlatten<Fut, Fut::Ok>
    ): Debug + Sink + Stream + FusedStream + New[|x: Fut| try_flatten::TryFlatten::new(x)]
    where Fut: TryFuture
);

#[cfg(feature = "sink")]
delegate_all!(
    /// Sink for the [`flatten_sink`](TryFutureExt::flatten_sink) method.
    #[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
    FlattenSink<Fut, Si>(
        try_flatten::TryFlatten<Fut, Si>
    ): Debug + Sink + Stream + FusedStream + New[|x: Fut| try_flatten::TryFlatten::new(x)]
);

delegate_all!(
    /// Future for the [`and_then`](TryFutureExt::and_then) method.
    AndThen<Fut1, Fut2, F>(
        TryFlatten<MapOk<Fut1, F>, Fut2>
    ): Debug + Future + FusedFuture + New[|x: Fut1, f: F| TryFlatten::new(MapOk::new(x, f))]
);

delegate_all!(
    /// Future for the [`or_else`](TryFutureExt::or_else) method.
    OrElse<Fut1, Fut2, F>(
        TryFlattenErr<MapErr<Fut1, F>, Fut2>
    ): Debug + Future + FusedFuture + New[|x: Fut1, f: F| TryFlattenErr::new(MapErr::new(x, f))]
);

delegate_all!(
    /// Future for the [`err_into`](TryFutureExt::err_into) method.
    ErrInto<Fut, E>(
        MapErr<Fut, IntoFn<E>>
    ): Debug + Future + FusedFuture + New[|x: Fut| MapErr::new(x, into_fn())]
);

delegate_all!(
    /// Future for the [`ok_into`](TryFutureExt::ok_into) method.
    OkInto<Fut, E>(
        MapOk<Fut, IntoFn<E>>
    ): Debug + Future + FusedFuture + New[|x: Fut| MapOk::new(x, into_fn())]
);

delegate_all!(
    /// Future for the [`inspect_ok`](super::TryFutureExt::inspect_ok) method.
    InspectOk<Fut, F>(
        Inspect<IntoFuture<Fut>, InspectOkFn<F>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| Inspect::new(IntoFuture::new(x), inspect_ok_fn(f))]
);

delegate_all!(
    /// Future for the [`inspect_err`](super::TryFutureExt::inspect_err) method.
    InspectErr<Fut, F>(
        Inspect<IntoFuture<Fut>, InspectErrFn<F>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| Inspect::new(IntoFuture::new(x), inspect_err_fn(f))]
);

#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::into_future::IntoFuture;

delegate_all!(
    /// Future for the [`map_ok`](TryFutureExt::map_ok) method.
    MapOk<Fut, F>(
        Map<IntoFuture<Fut>, MapOkFn<F>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| Map::new(IntoFuture::new(x), map_ok_fn(f))]
);

delegate_all!(
    /// Future for the [`map_err`](TryFutureExt::map_err) method.
    MapErr<Fut, F>(
        Map<IntoFuture<Fut>, MapErrFn<F>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| Map::new(IntoFuture::new(x), map_err_fn(f))]
);

delegate_all!(
    /// Future for the [`map_ok_or_else`](TryFutureExt::map_ok_or_else) method.
    MapOkOrElse<Fut, F, G>(
        Map<IntoFuture<Fut>, MapOkOrElseFn<F, G>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F, g: G| Map::new(IntoFuture::new(x), map_ok_or_else_fn(f, g))]
);

delegate_all!(
    /// Future for the [`unwrap_or_else`](TryFutureExt::unwrap_or_else) method.
    UnwrapOrElse<Fut, F>(
        Map<IntoFuture<Fut>, UnwrapOrElseFn<F>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| Map::new(IntoFuture::new(x), unwrap_or_else_fn(f))]
);

impl<Fut: ?Sized + TryFuture> TryFutureExt for Fut {}

/// Adapters specific to [`Result`]-returning futures
pub trait TryFutureExt: TryFuture {
    /// Flattens the execution of this future when the successful result of this
    /// future is a [`Sink`].
    ///
    /// This can be useful when sink initialization is deferred, and it is
    /// convenient to work with that sink as if the sink was available at the
    /// call site.
    ///
    /// Note that this function consumes this future and returns a wrapped
    /// version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::{Future, TryFutureExt};
    /// use futures::sink::Sink;
    /// # use futures::channel::mpsc::{self, SendError};
    /// # type T = i32;
    /// # type E = SendError;
    ///
    /// fn make_sink_async() -> impl Future<Output = Result<
    ///     impl Sink<T, Error = E>,
    ///     E,
    /// >> { // ... }
    /// # let (tx, _rx) = mpsc::unbounded::<i32>();
    /// # futures::future::ready(Ok(tx))
    /// # }
    /// fn take_sink(sink: impl Sink<T, Error = E>) { /* ... */ }
    ///
    /// let fut = make_sink_async();
    /// take_sink(fut.flatten_sink())
    /// ```
    #[cfg(feature = "sink")]
    #[cfg_attr(docsrs, doc(cfg(feature = "sink")))]
    fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok>
    where
        Self::Ok: Sink<Item, Error = Self::Error>,
        Self: Sized,
    {
        FlattenSink::new(self)
    }

    /// Maps this future's success value to a different value.
    ///
    /// This method can be used to change the [`Ok`](TryFuture::Ok) type of the
    /// future into a different type. It is similar to the [`Result::map`]
    /// method. You can use this method to chain along a computation once the
    /// future has been resolved.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Ok`]. If it resolves to an [`Err`], panics, or is dropped, then
    /// the provided closure will never be invoked.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.map_ok(|x| x + 3);
    /// assert_eq!(future.await, Ok(4));
    /// # });
    /// ```
    ///
    /// Calling [`map_ok`](TryFutureExt::map_ok) on an errored future has no
    /// effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.map_ok(|x| x + 3);
    /// assert_eq!(future.await, Err(1));
    /// # });
    /// ```
    fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
    where
        F: FnOnce(Self::Ok) -> T,
        Self: Sized,
    {
        assert_future::<Result<T, Self::Error>, _>(MapOk::new(self, f))
    }

    /// Maps this future's success value to a different value, and permits for error handling resulting in the same type.
    ///
    /// This method can be used to coalesce your [`Ok`](TryFuture::Ok) type and [`Error`](TryFuture::Error) into another type,
    /// where that type is the same for both outcomes.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Ok`]. If it resolves to an [`Err`], panics, or is dropped, then
    /// the provided closure will never be invoked.
    ///
    /// The provided closure `e` will only be called if this future is resolved
    /// to an [`Err`]. If it resolves to an [`Ok`], panics, or is dropped, then
    /// the provided closure will never be invoked.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(5) };
    /// let future = future.map_ok_or_else(|x| x * 2, |x| x + 3);
    /// assert_eq!(future.await, 8);
    ///
    /// let future = async { Err::<i32, i32>(5) };
    /// let future = future.map_ok_or_else(|x| x * 2, |x| x + 3);
    /// assert_eq!(future.await, 10);
    /// # });
    /// ```
    ///
    fn map_ok_or_else<T, E, F>(self, e: E, f: F) -> MapOkOrElse<Self, F, E>
    where
        F: FnOnce(Self::Ok) -> T,
        E: FnOnce(Self::Error) -> T,
        Self: Sized,
    {
        assert_future::<T, _>(MapOkOrElse::new(self, f, e))
    }

    /// Maps this future's error value to a different value.
    ///
    /// This method can be used to change the [`Error`](TryFuture::Error) type
    /// of the future into a different type. It is similar to the
    /// [`Result::map_err`] method. You can use this method for example to
    /// ensure that futures have the same [`Error`](TryFuture::Error) type when
    /// using [`select!`] or [`join!`].
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Err`]. If it resolves to an [`Ok`], panics, or is dropped, then
    /// the provided closure will never be invoked.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.map_err(|x| x + 3);
    /// assert_eq!(future.await, Err(4));
    /// # });
    /// ```
    ///
    /// Calling [`map_err`](TryFutureExt::map_err) on a successful future has
    /// no effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.map_err(|x| x + 3);
    /// assert_eq!(future.await, Ok(1));
    /// # });
    /// ```
    fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
    where
        F: FnOnce(Self::Error) -> E,
        Self: Sized,
    {
        assert_future::<Result<Self::Ok, E>, _>(MapErr::new(self, f))
    }

    /// Maps this future's [`Error`](TryFuture::Error) to a new error type
    /// using the [`Into`](std::convert::Into) trait.
    ///
    /// This method does for futures what the `?`-operator does for
    /// [`Result`]: It lets the compiler infer the type of the resulting
    /// error. Just as [`map_err`](TryFutureExt::map_err), this is useful for
    /// example to ensure that futures have the same [`Error`](TryFuture::Error)
    /// type when using [`select!`] or [`join!`].
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future_err_u8 = async { Err::<(), u8>(1) };
    /// let future_err_i32 = future_err_u8.err_into::<i32>();
    /// # });
    /// ```
    fn err_into<E>(self) -> ErrInto<Self, E>
    where
        Self: Sized,
        Self::Error: Into<E>,
    {
        assert_future::<Result<Self::Ok, E>, _>(ErrInto::new(self))
    }

    /// Maps this future's [`Ok`](TryFuture::Ok) to a new type
    /// using the [`Into`](std::convert::Into) trait.
    fn ok_into<U>(self) -> OkInto<Self, U>
    where
        Self: Sized,
        Self::Ok: Into<U>,
    {
        assert_future::<Result<U, Self::Error>, _>(OkInto::new(self))
    }

    /// Executes another future after this one resolves successfully. The
    /// success value is passed to a closure to create this subsequent future.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Ok`]. If this future resolves to an [`Err`], panics, or is
    /// dropped, then the provided closure will never be invoked. The
    /// [`Error`](TryFuture::Error) type of this future and the future
    /// returned by `f` have to match.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.and_then(|x| async move { Ok::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Ok(4));
    /// # });
    /// ```
    ///
    /// Calling [`and_then`](TryFutureExt::and_then) on an errored future has no
    /// effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.and_then(|x| async move { Err::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Err(1));
    /// # });
    /// ```
    fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
    where
        F: FnOnce(Self::Ok) -> Fut,
        Fut: TryFuture<Error = Self::Error>,
        Self: Sized,
    {
        assert_future::<Result<Fut::Ok, Fut::Error>, _>(AndThen::new(self, f))
    }

    /// Executes another future if this one resolves to an error. The
    /// error value is passed to a closure to create this subsequent future.
    ///
    /// The provided closure `f` will only be called if this future is resolved
    /// to an [`Err`]. If this future resolves to an [`Ok`], panics, or is
    /// dropped, then the provided closure will never be invoked. The
    /// [`Ok`](TryFuture::Ok) type of this future and the future returned by `f`
    /// have to match.
    ///
    /// Note that this method consumes the future it is called on and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<i32, i32>(1) };
    /// let future = future.or_else(|x| async move { Err::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Err(4));
    /// # });
    /// ```
    ///
    /// Calling [`or_else`](TryFutureExt::or_else) on a successful future has
    /// no effect:
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Ok::<i32, i32>(1) };
    /// let future = future.or_else(|x| async move { Ok::<i32, i32>(x + 3) });
    /// assert_eq!(future.await, Ok(1));
    /// # });
    /// ```
    fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
    where
        F: FnOnce(Self::Error) -> Fut,
        Fut: TryFuture<Ok = Self::Ok>,
        Self: Sized,
    {
        assert_future::<Result<Fut::Ok, Fut::Error>, _>(OrElse::new(self, f))
    }

    /// Do something with the success value of a future before passing it on.
    ///
    /// When using futures, you'll often chain several of them together.  While
    /// working on such code, you might want to check out what's happening at
    /// various parts in the pipeline, without consuming the intermediate
    /// value. To do that, insert a call to `inspect_ok`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::TryFutureExt;
    ///
    /// let future = async { Ok::<_, ()>(1) };
    /// let new_future = future.inspect_ok(|&x| println!("about to resolve: {}", x));
    /// assert_eq!(new_future.await, Ok(1));
    /// # });
    /// ```
    fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
    where
        F: FnOnce(&Self::Ok),
        Self: Sized,
    {
        assert_future::<Result<Self::Ok, Self::Error>, _>(InspectOk::new(self, f))
    }

    /// Do something with the error value of a future before passing it on.
    ///
    /// When using futures, you'll often chain several of them together.  While
    /// working on such code, you might want to check out what's happening at
    /// various parts in the pipeline, without consuming the intermediate
    /// value. To do that, insert a call to `inspect_err`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::TryFutureExt;
    ///
    /// let future = async { Err::<(), _>(1) };
    /// let new_future = future.inspect_err(|&x| println!("about to error: {}", x));
    /// assert_eq!(new_future.await, Err(1));
    /// # });
    /// ```
    fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
    where
        F: FnOnce(&Self::Error),
        Self: Sized,
    {
        assert_future::<Result<Self::Ok, Self::Error>, _>(InspectErr::new(self, f))
    }

    /// Flatten the execution of this future when the successful result of this
    /// future is another future.
    ///
    /// This is equivalent to `future.and_then(|x| x)`.
    fn try_flatten(self) -> TryFlatten<Self, Self::Ok>
    where
        Self::Ok: TryFuture<Error = Self::Error>,
        Self: Sized,
    {
        TryFlatten::new(self)
    }

    /// Flatten the execution of this future when the successful result of this
    /// future is a stream.
    ///
    /// This can be useful when stream initialization is deferred, and it is
    /// convenient to work with that stream as if stream was available at the
    /// call site.
    ///
    /// Note that this function consumes this future and returns a wrapped
    /// version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::TryFutureExt;
    /// use futures::stream::{self, TryStreamExt};
    ///
    /// let stream_items = vec![17, 18, 19].into_iter().map(Ok);
    /// let future_of_a_stream = async { Ok::<_, ()>(stream::iter(stream_items)) };
    ///
    /// let stream = future_of_a_stream.try_flatten_stream();
    /// let list = stream.try_collect::<Vec<_>>().await;
    /// assert_eq!(list, Ok(vec![17, 18, 19]));
    /// # });
    /// ```
    fn try_flatten_stream(self) -> TryFlattenStream<Self>
    where
        Self::Ok: TryStream<Error = Self::Error>,
        Self: Sized,
    {
        assert_stream::<Result<<Self::Ok as TryStream>::Ok, Self::Error>, _>(TryFlattenStream::new(
            self,
        ))
    }

    /// Unwraps this future's ouput, producing a future with this future's
    /// [`Ok`](TryFuture::Ok) type as its
    /// [`Output`](std::future::Future::Output) type.
    ///
    /// If this future is resolved successfully, the returned future will
    /// contain the original future's success value as output. Otherwise, the
    /// closure `f` is called with the error value to produce an alternate
    /// success value.
    ///
    /// This method is similar to the [`Result::unwrap_or_else`] method.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::TryFutureExt;
    ///
    /// # futures::executor::block_on(async {
    /// let future = async { Err::<(), &str>("Boom!") };
    /// let future = future.unwrap_or_else(|_| ());
    /// assert_eq!(future.await, ());
    /// # });
    /// ```
    fn unwrap_or_else<F>(self, f: F) -> UnwrapOrElse<Self, F>
    where
        Self: Sized,
        F: FnOnce(Self::Error) -> Self::Ok,
    {
        assert_future::<Self::Ok, _>(UnwrapOrElse::new(self, f))
    }

    /// Wraps a [`TryFuture`] into a future compatable with libraries using
    /// futures 0.1 future definitons. Requires the `compat` feature to enable.
    #[cfg(feature = "compat")]
    #[cfg_attr(docsrs, doc(cfg(feature = "compat")))]
    fn compat(self) -> Compat<Self>
    where
        Self: Sized + Unpin,
    {
        Compat::new(self)
    }

    /// Wraps a [`TryFuture`] into a type that implements
    /// [`Future`](std::future::Future).
    ///
    /// [`TryFuture`]s currently do not implement the
    /// [`Future`](std::future::Future) trait due to limitations of the
    /// compiler.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::future::{Future, TryFuture, TryFutureExt};
    ///
    /// # type T = i32;
    /// # type E = ();
    /// fn make_try_future() -> impl TryFuture<Ok = T, Error = E> { // ... }
    /// # async { Ok::<i32, ()>(1) }
    /// # }
    /// fn take_future(future: impl Future<Output = Result<T, E>>) { /* ... */ }
    ///
    /// take_future(make_try_future().into_future());
    /// ```
    fn into_future(self) -> IntoFuture<Self>
    where
        Self: Sized,
    {
        assert_future::<Result<Self::Ok, Self::Error>, _>(IntoFuture::new(self))
    }

    /// A convenience method for calling [`TryFuture::try_poll`] on [`Unpin`]
    /// future types.
    fn try_poll_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Result<Self::Ok, Self::Error>>
    where
        Self: Unpin,
    {
        Pin::new(self).try_poll(cx)
    }
}