Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
use futures_core::future::{FusedFuture, Future};
use futures_core::task::{Context, Poll, Waker};
use slab::Slab;
use std::{fmt, mem};
use std::cell::UnsafeCell;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::sync::Mutex as StdMutex;
use std::sync::atomic::{AtomicUsize, Ordering};

/// A futures-aware mutex.
/// 
/// # Fairness
/// 
/// This mutex provides no fairness guarantees. Tasks may not acquire the mutex
/// in the order that they requested the lock, and it's possible for a single task
/// which repeatedly takes the lock to starve other tasks, which may be left waiting
/// indefinitely.
pub struct Mutex<T: ?Sized> {
    state: AtomicUsize,
    waiters: StdMutex<Slab<Waiter>>,
    value: UnsafeCell<T>,
}

impl<T: ?Sized> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let state = self.state.load(Ordering::SeqCst);
        f.debug_struct("Mutex")
            .field("is_locked", &((state & IS_LOCKED) != 0))
            .field("has_waiters", &((state & HAS_WAITERS) != 0))
            .finish()
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(t: T) -> Self {
        Self::new(t)
    }
}

impl<T: Default> Default for Mutex<T> {
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

enum Waiter {
    Waiting(Waker),
    Woken,
}

impl Waiter {
    fn register(&mut self, waker: &Waker) {
        match self {
            Waiter::Waiting(w) if waker.will_wake(w) => {},
            _ => *self = Waiter::Waiting(waker.clone()),
        }
    }

    fn wake(&mut self) {
        match mem::replace(self, Waiter::Woken) {
            Waiter::Waiting(waker) => waker.wake(),
            Waiter::Woken => {},
        }
    }
}

#[allow(clippy::identity_op)] // https://github.com/rust-lang/rust-clippy/issues/3445
const IS_LOCKED: usize = 1 << 0;
const HAS_WAITERS: usize = 1 << 1;

impl<T> Mutex<T> {
    /// Creates a new futures-aware mutex.
    pub fn new(t: T) -> Mutex<T> {
        Mutex {
            state: AtomicUsize::new(0),
            waiters: StdMutex::new(Slab::new()),
            value: UnsafeCell::new(t),
        }
    }

    /// Consumes this mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use futures::lock::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// assert_eq!(mutex.into_inner(), 0);
    /// ```
    pub fn into_inner(self) -> T {
        self.value.into_inner()
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Attempt to acquire the lock immediately.
    ///
    /// If the lock is currently held, this will return `None`.
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        let old_state = self.state.fetch_or(IS_LOCKED, Ordering::Acquire);
        if (old_state & IS_LOCKED) == 0 {
            Some(MutexGuard { mutex: self })
        } else {
            None
        }
    }

    /// Acquire the lock asynchronously.
    ///
    /// This method returns a future that will resolve once the lock has been
    /// successfully acquired.
    pub fn lock(&self) -> MutexLockFuture<'_, T> {
        MutexLockFuture {
            mutex: Some(self),
            wait_key: WAIT_KEY_NONE,
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::lock::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut() = 10;
    /// assert_eq!(*mutex.lock().await, 10);
    /// # });
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        // We know statically that there are no other references to `self`, so
        // there's no need to lock the inner mutex.
        unsafe { &mut *self.value.get() }
    }

    fn remove_waker(&self, wait_key: usize, wake_another: bool) {
        if wait_key != WAIT_KEY_NONE {
            let mut waiters = self.waiters.lock().unwrap();
            match waiters.remove(wait_key) {
                Waiter::Waiting(_) => {},
                Waiter::Woken => {
                    // We were awoken, but then dropped before we could
                    // wake up to acquire the lock. Wake up another
                    // waiter.
                    if wake_another {
                        if let Some((_i, waiter)) = waiters.iter_mut().next() {
                            waiter.wake();
                        }
                    }
                }
            }
            if waiters.is_empty() {
                self.state.fetch_and(!HAS_WAITERS, Ordering::Relaxed); // released by mutex unlock
            }
        }
    }

    // Unlocks the mutex. Called by MutexGuard and MappedMutexGuard when they are
    // dropped.
    fn unlock(&self) {
        let old_state = self.state.fetch_and(!IS_LOCKED, Ordering::AcqRel);
        if (old_state & HAS_WAITERS) != 0 {
            let mut waiters = self.waiters.lock().unwrap();
            if let Some((_i, waiter)) = waiters.iter_mut().next() {
                waiter.wake();
            }
        }
    }
}

// Sentinel for when no slot in the `Slab` has been dedicated to this object.
const WAIT_KEY_NONE: usize = usize::max_value();

/// A future which resolves when the target mutex has been successfully acquired.
pub struct MutexLockFuture<'a, T: ?Sized> {
    // `None` indicates that the mutex was successfully acquired.
    mutex: Option<&'a Mutex<T>>,
    wait_key: usize,
}

impl<T: ?Sized> fmt::Debug for MutexLockFuture<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("MutexLockFuture")
            .field("was_acquired", &self.mutex.is_none())
            .field("mutex", &self.mutex)
            .field("wait_key", &(
                    if self.wait_key == WAIT_KEY_NONE {
                        None
                    } else {
                        Some(self.wait_key)
                    }
                ))
            .finish()
    }
}

impl<T: ?Sized> FusedFuture for MutexLockFuture<'_, T> {
    fn is_terminated(&self) -> bool {
        self.mutex.is_none()
    }
}

impl<'a, T: ?Sized> Future for MutexLockFuture<'a, T> {
    type Output = MutexGuard<'a, T>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let mutex = self.mutex.expect("polled MutexLockFuture after completion");

        if let Some(lock) = mutex.try_lock() {
            mutex.remove_waker(self.wait_key, false);
            self.mutex = None;
            return Poll::Ready(lock);
        }

        {
            let mut waiters = mutex.waiters.lock().unwrap();
            if self.wait_key == WAIT_KEY_NONE {
                self.wait_key = waiters.insert(Waiter::Waiting(cx.waker().clone()));
                if waiters.len() == 1 {
                    mutex.state.fetch_or(HAS_WAITERS, Ordering::Relaxed); // released by mutex unlock
                }
            } else {
                waiters[self.wait_key].register(cx.waker());
            }
        }

        // Ensure that we haven't raced `MutexGuard::drop`'s unlock path by
        // attempting to acquire the lock again.
        if let Some(lock) = mutex.try_lock() {
            mutex.remove_waker(self.wait_key, false);
            self.mutex = None;
            return Poll::Ready(lock);
        }

        Poll::Pending
    }
}

impl<T: ?Sized> Drop for MutexLockFuture<'_, T> {
    fn drop(&mut self) {
        if let Some(mutex) = self.mutex {
            // This future was dropped before it acquired the mutex.
            //
            // Remove ourselves from the map, waking up another waiter if we
            // had been awoken to acquire the lock.
            mutex.remove_waker(self.wait_key, true);
        }
    }
}

/// An RAII guard returned by the `lock` and `try_lock` methods.
/// When this structure is dropped (falls out of scope), the lock will be
/// unlocked.
pub struct MutexGuard<'a, T: ?Sized> {
    mutex: &'a Mutex<T>,
}

impl<'a, T: ?Sized> MutexGuard<'a, T> {
    /// Returns a locked view over a portion of the locked data.
    ///
    /// # Example
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::lock::{Mutex, MutexGuard};
    ///
    /// let data = Mutex::new(Some("value".to_string()));
    /// {
    ///     let locked_str = MutexGuard::map(data.lock().await, |opt| opt.as_mut().unwrap());
    ///     assert_eq!(&*locked_str, "value");
    /// }
    /// # });
    /// ```
    #[inline]
    pub fn map<U: ?Sized, F>(this: Self, f: F) -> MappedMutexGuard<'a, T, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        let mutex = this.mutex;
        let value = f(unsafe { &mut *this.mutex.value.get() });
        // Don't run the `drop` method for MutexGuard. The ownership of the underlying
        // locked state is being moved to the returned MappedMutexGuard.
        mem::forget(this);
        MappedMutexGuard { mutex, value }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("MutexGuard")
            .field("value", &&**self)
            .field("mutex", &self.mutex)
            .finish()
    }
}

impl<T: ?Sized> Drop for MutexGuard<'_, T> {
    fn drop(&mut self) {
        self.mutex.unlock()
    }
}

impl<T: ?Sized> Deref for MutexGuard<'_, T> {
    type Target = T;
    fn deref(&self) -> &T {
        unsafe { &*self.mutex.value.get() }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.mutex.value.get() }
    }
}

/// An RAII guard returned by the `MutexGuard::map` and `MappedMutexGuard::map` methods.
/// When this structure is dropped (falls out of scope), the lock will be unlocked.
pub struct MappedMutexGuard<'a, T: ?Sized, U: ?Sized> {
    mutex: &'a Mutex<T>,
    value: *mut U,
}

impl<'a, T: ?Sized, U: ?Sized> MappedMutexGuard<'a, T, U> {
    /// Returns a locked view over a portion of the locked data.
    ///
    /// # Example
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::lock::{MappedMutexGuard, Mutex, MutexGuard};
    ///
    /// let data = Mutex::new(Some("value".to_string()));
    /// {
    ///     let locked_str = MutexGuard::map(data.lock().await, |opt| opt.as_mut().unwrap());
    ///     let locked_char = MappedMutexGuard::map(locked_str, |s| s.get_mut(0..1).unwrap());
    ///     assert_eq!(&*locked_char, "v");
    /// }
    /// # });
    /// ```
    #[inline]
    pub fn map<V: ?Sized, F>(this: Self, f: F) -> MappedMutexGuard<'a, T, V>
    where
        F: FnOnce(&mut U) -> &mut V,
    {
        let mutex = this.mutex;
        let value = f(unsafe { &mut *this.value });
        // Don't run the `drop` method for MappedMutexGuard. The ownership of the underlying
        // locked state is being moved to the returned MappedMutexGuard.
        mem::forget(this);
        MappedMutexGuard { mutex, value }
    }
}

impl<T: ?Sized, U: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'_, T, U> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("MappedMutexGuard")
            .field("value", &&**self)
            .field("mutex", &self.mutex)
            .finish()
    }
}

impl<T: ?Sized, U: ?Sized> Drop for MappedMutexGuard<'_, T, U> {
    fn drop(&mut self) {
        self.mutex.unlock()
    }
}

impl<T: ?Sized, U: ?Sized> Deref for MappedMutexGuard<'_, T, U> {
    type Target = U;
    fn deref(&self) -> &U {
        unsafe { &*self.value }
    }
}

impl<T: ?Sized, U: ?Sized> DerefMut for MappedMutexGuard<'_, T, U> {
    fn deref_mut(&mut self) -> &mut U {
        unsafe { &mut *self.value }
    }
}

// Mutexes can be moved freely between threads and acquired on any thread so long
// as the inner value can be safely sent between threads.
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

// It's safe to switch which thread the acquire is being attempted on so long as
// `T` can be accessed on that thread.
unsafe impl<T: ?Sized + Send> Send for MutexLockFuture<'_, T> {}
// doesn't have any interesting `&self` methods (only Debug)
unsafe impl<T: ?Sized> Sync for MutexLockFuture<'_, T> {}

// Safe to send since we don't track any thread-specific details-- the inner
// lock is essentially spinlock-equivalent (attempt to flip an atomic bool)
unsafe impl<T: ?Sized + Send> Send for MutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Send, U: ?Sized> Send for MappedMutexGuard<'_, T, U> {}
unsafe impl<T: ?Sized + Sync, U: ?Sized> Sync for MappedMutexGuard<'_, T, U> {}

#[test]
fn test_mutex_guard_debug_not_recurse() {
    let mutex = Mutex::new(42);
    let guard = mutex.try_lock().unwrap();
    let _ = format!("{:?}", guard);
    let guard = MutexGuard::map(guard, |n| n);
    let _ = format!("{:?}", guard);
}