Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright 2014 The Gfx-rs Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Slices
//!
//! See `Slice`-structure documentation for more information on this module.

use core::{handle, buffer};
use core::{Primitive, Resources, VertexCount};
use core::command::InstanceParams;
use core::factory::Factory;
use core::memory::Bind;
use format::Format;
use pso;

/// A `Slice` dictates in which and in what order vertices get processed. It is required for
/// processing a PSO.
///
/// # Overview
/// A `Slice` in gfx has a different meaning from the term slice as employed more broadly in rust (`&[T]`).
///
/// A `Slice` object in essence dictates in what order the vertices in a `VertexBuffer` get
/// processed. To do this, it contains an internal index-buffer. This `Buffer` is a list of
/// indices into this `VertexBuffer` (vertex-index). A vertex-index of 0 represents the first
/// vertex in the `VertexBuffer`, a vertex-index of 1 represents the second, 2 represents the
/// third, and so on. The vertex-indices in the index-buffer are read in order; every vertex-index
/// tells the pipeline which vertex to process next.
///
/// Because the same index can re-appear multiple times, duplicate-vertices can be avoided. For
/// instance, if you want to draw a square, you need two triangles, and thus six vertices. Because
/// the same index can reappear multiple times, this means we can instead use 4 vertices, and 6
/// vertex-indices.
///
/// This index-buffer has a few variants. See the `IndexBuffer` documentation for a detailed
/// description.
///
/// The `start` and `end` fields say where in the index-buffer to start and stop reading.
/// Setting `start` to 0, and `end` to the length of the index-buffer, will cause the entire
/// index-buffer to be processed. The `base_vertex` dictates the index of the first vertex
/// in the `VertexBuffer`. This essentially moves the the start of the `VertexBuffer`, to the
/// vertex with this index.
///
/// # Constuction & Handling
/// The `Slice` structure can be constructed automatically when using a `Factory` to create a
/// vertex buffer. If needed, it can also be created manually.
///
/// A `Slice` is required to process a PSO, as it contains the needed information on in what order
/// to draw which vertices. As such, every `draw` call on an `Encoder` requires a `Slice`.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct Slice<R: Resources> {
    /// The start index of the index-buffer. Processing will start at this location in the
    /// index-buffer.
    pub start: VertexCount,
    /// The end index in the index-buffer. Processing will stop at this location (exclusive) in
    /// the index buffer.
    pub end: VertexCount,
    /// This is the index of the first vertex in the `VertexBuffer`. This value will be added to
    /// every index in the index-buffer, effectively moving the start of the `VertexBuffer` to this
    /// base-vertex.
    pub base_vertex: VertexCount,
    /// Instancing configuration.
    pub instances: Option<InstanceParams>,
    /// Represents the type of index-buffer used.
    pub buffer: IndexBuffer<R>,
}

impl<R: Resources> Slice<R> {
    /// Creates a new `Slice` with a given vertex count.
    pub fn from_vertex_count(count: VertexCount) -> Self {
        Slice {
            start: 0,
            end: count,
            base_vertex: 0,
            instances: None,
            buffer: IndexBuffer::Auto,
        }
    }
    /// Creates a new `Slice` to match the supplied vertex buffer, from start to end, in order.
    pub fn new_match_vertex_buffer<V>(vbuf: &handle::Buffer<R, V>) -> Self
                                      where V: pso::buffer::Structure<Format> {
        Slice {
            start: 0,
            end: vbuf.len() as u32,
            base_vertex: 0,
            instances: None,
            buffer: IndexBuffer::Auto,
        }
    }

    /// Calculates the number of primitives of the specified type in this `Slice`.
    pub fn get_prim_count(&self, prim: Primitive) -> u32 {
        use core::Primitive as p;
        let nv = (self.end - self.start) as u32;
        match prim {
            p::PointList => nv,
            p::LineList => nv / 2,
            p::LineStrip => (nv-1),
            p::TriangleList => nv / 3,
            p::TriangleStrip => (nv-2) / 3,
            p::LineListAdjacency => nv / 4,
            p::LineStripAdjacency => (nv-3),
            p::TriangleListAdjacency => nv / 6,
            p::TriangleStripAdjacency => (nv-4) / 2,
            p::PatchList(num) => nv / (num as u32),
        }
    }

    /// Divides one slice into two at an index.
    ///
    /// The first will contain the range in the index-buffer [self.start, mid) (excluding the index mid itself) and the
    /// second will contain the range [mid, self.end).
    pub fn split_at(&self, mid: VertexCount) -> (Self, Self) {
        let mut first = self.clone();
        let mut second = self.clone();
        first.end = mid;
        second.start = mid;

        (first, second)
    }
}

/// Type of index-buffer used in a Slice.
///
/// The `Auto` variant represents a hypothetical index-buffer from 0 to infinity. In other words,
/// all vertices get processed in order. Do note that the `Slice`'s `start` and `end` restrictions
/// still apply for this variant. To render every vertex in the `VertexBuffer`, you would set
/// `start` to 0, and `end` to the `VertexBuffer`'s length.
///
/// The `Index*` variants represent an actual `Buffer` with a list of vertex-indices. The numeric
/// suffix specifies the amount of bits to use per index. Each of these also contains a
/// base-vertex. This is the index of the first vertex in the `VertexBuffer`. This value will be
/// added to every index in the index-buffer, effectively moving the start of the `VertexBuffer` to
/// this base-vertex.
///
/// # Construction & Handling
/// A `IndexBuffer` can be constructed using the `IntoIndexBuffer` trait, from either a slice or a
/// `Buffer` of integers, using a factory.
///
/// An `IndexBuffer` is exclusively used to create `Slice`s.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub enum IndexBuffer<R: Resources> {
    /// Represents a hypothetical index-buffer from 0 to infinity. In other words, all vertices
    /// get processed in order.
    Auto,
    /// An index-buffer with unsigned 16 bit indices.
    Index16(handle::Buffer<R, u16>),
    /// An index-buffer with unsigned 32 bit indices.
    Index32(handle::Buffer<R, u32>),
}

impl<R: Resources> Default for IndexBuffer<R> {
    fn default() -> Self {
        IndexBuffer::Auto
    }
}
/// A helper trait to create `IndexBuffers` from different kinds of data.
pub trait IntoIndexBuffer<R: Resources> {
    /// Turns self into an `IndexBuffer`.
    fn into_index_buffer<F: Factory<R> + ?Sized>(self, factory: &mut F) -> IndexBuffer<R>;
}

impl<R: Resources> IntoIndexBuffer<R> for IndexBuffer<R> {
    fn into_index_buffer<F: Factory<R> + ?Sized>(self, _: &mut F) -> IndexBuffer<R> {
        self
    }
}

impl<R: Resources> IntoIndexBuffer<R> for () {
    fn into_index_buffer<F: Factory<R> + ?Sized>(self, _: &mut F) -> IndexBuffer<R> {
        IndexBuffer::Auto
    }
}

macro_rules! impl_index_buffer {
    ($prim_ty:ty, $buf_ty:ident) => (
        impl<R: Resources> IntoIndexBuffer<R> for handle::Buffer<R, $prim_ty> {
            fn into_index_buffer<F: Factory<R> + ?Sized>(self, _: &mut F) -> IndexBuffer<R> {
                IndexBuffer::$buf_ty(self)
            }
        }

        impl<'s, R: Resources> IntoIndexBuffer<R> for &'s [$prim_ty] {
            fn into_index_buffer<F: Factory<R> + ?Sized>(self, factory: &mut F) -> IndexBuffer<R> {
                factory.create_buffer_immutable(self, buffer::Role::Index, Bind::empty())
                       .unwrap()
                       .into_index_buffer(factory)
            }
        }
    )
}

impl_index_buffer!(u16, Index16);
impl_index_buffer!(u32, Index32);