Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use {
    crate::{memory::Memory, Size},
    hal::{device::Device as _, Backend},
    std::{iter, ops::Range, ptr::NonNull, slice},
};

#[derive(Debug)]
struct Flush<'a, B: Backend> {
    device: &'a B::Device,
    memory: &'a B::Memory,
    segment: hal::memory::Segment,
}

/// Wrapper structure for a mutable slice with deferred
/// flushing for non-coherent memory.
#[derive(Debug)]
pub struct Writer<'a, 'b, T, B: Backend> {
    /// Wrapped slice.
    pub slice: &'a mut [T],
    flush: Option<Flush<'b, B>>,
}

impl<T, B: Backend> Writer<'_, '_, T, B> {
    /// Dispose of the wrapper and return a bare mapping pointer.
    ///
    /// The segment to flush is returned. The user is responsible
    /// to flush this segment manually.
    pub fn forget(mut self) -> (*mut T, Option<hal::memory::Segment>) {
        (
            self.slice.as_mut_ptr(),
            self.flush.take().map(|f| f.segment),
        )
    }
}

impl<'a, 'b, T, B: Backend> Drop for Writer<'a, 'b, T, B> {
    fn drop(&mut self) {
        if let Some(f) = self.flush.take() {
            unsafe {
                f.device
                    .flush_mapped_memory_ranges(iter::once((f.memory, f.segment)))
                    .expect("Should flush successfully")
            };
        }
    }
}

/// Represents range of the memory mapped to the host.
/// Provides methods for safer host access to the memory.
#[derive(Debug)]
pub struct MappedRange<'a, B: Backend> {
    /// Memory object that is mapped.
    memory: &'a Memory<B>,

    /// Pointer to range mapped memory.
    ptr: NonNull<u8>,

    /// Range of mapped memory.
    mapping_range: Range<Size>,

    /// Mapping range requested by caller.
    /// Must be subrange of `mapping_range`.
    requested_range: Range<Size>,
}

impl<'a, B: Backend> MappedRange<'a, B> {
    /// Construct mapped range from raw mapping
    ///
    /// # Safety
    ///
    /// `memory` `range` must be mapped to host memory region pointer by `ptr`.
    /// `range` is in memory object space.
    /// `ptr` points to the `range.start` offset from memory origin.
    pub(crate) unsafe fn from_raw(
        memory: &'a Memory<B>,
        ptr: *mut u8,
        mapping_range: Range<Size>,
        requested_range: Range<Size>,
    ) -> Self {
        debug_assert!(
            mapping_range.start < mapping_range.end,
            "Memory mapping region must have valid size"
        );

        debug_assert!(
            requested_range.start < requested_range.end,
            "Memory mapping region must have valid size"
        );

        match memory.non_coherent_atom_size {
            Some(atom) => {
                debug_assert_eq!((mapping_range.start % atom.get(), mapping_range.end % atom.get()), (0, 0),
                    "Bounds of non-coherent memory mapping ranges must be multiple of `Limits::non_coherent_atom_size`",
                );
                debug_assert!(
                    crate::is_sub_range(&requested_range, &mapping_range),
                    "Requested {:?} must be sub-range of mapping {:?}",
                    requested_range,
                    mapping_range,
                );
            }
            None => {
                debug_assert_eq!(mapping_range, requested_range);
            }
        };

        MappedRange {
            ptr: NonNull::new_unchecked(ptr),
            mapping_range,
            requested_range,
            memory,
        }
    }

    /// Get pointer to beginning of memory region.
    /// i.e. to `range().start` offset from memory origin.
    pub fn ptr(&self) -> NonNull<u8> {
        let offset = (self.requested_range.start - self.mapping_range.start) as isize;
        unsafe { NonNull::new_unchecked(self.ptr.as_ptr().offset(offset)) }
    }

    /// Get mapped range.
    pub fn range(&self) -> Range<Size> {
        self.requested_range.clone()
    }

    /// Return true if the mapped memory is coherent.
    pub fn is_coherent(&self) -> bool {
        self.memory.non_coherent_atom_size.is_none()
    }

    /// Fetch readable slice of sub-range to be read.
    /// Invalidating range if memory is not coherent.
    ///
    /// # Safety
    ///
    /// * Caller must ensure that device won't write to the memory region until the borrowing ends.
    /// * `T` Must be plain-old-data type compatible with data in mapped region.
    pub unsafe fn read<'b, T>(
        &'b mut self,
        device: &B::Device,
        segment: hal::memory::Segment,
    ) -> Result<&'b [T], hal::device::MapError>
    where
        'a: 'b,
        T: Copy,
    {
        let sub_range = crate::segment_to_sub_range(segment, &self.requested_range)?;

        if let Some(atom) = self.memory.non_coherent_atom_size {
            let aligned_range = crate::align_range(&sub_range, atom);
            let segment = hal::memory::Segment {
                offset: aligned_range.start,
                size: Some(aligned_range.end - aligned_range.start),
            };
            device.invalidate_mapped_memory_ranges(iter::once((self.memory.raw(), segment)))?;
        }

        let ptr = self
            .ptr
            .as_ptr()
            .offset((sub_range.start - self.mapping_range.start) as isize);
        let size = (sub_range.end - sub_range.start) as usize;

        let (_pre, slice, _post) = slice::from_raw_parts(ptr, size).align_to();
        Ok(slice)
    }

    /// Fetch writer to the sub-region.
    /// This writer will flush data on drop if written at least once.
    ///
    /// # Safety
    ///
    /// * Caller must ensure that device won't write to or read from the memory region.
    pub unsafe fn write<'b, T: 'b>(
        &'b mut self,
        device: &'b B::Device,
        segment: hal::memory::Segment,
    ) -> Result<Writer<'a, 'b, T, B>, hal::device::MapError>
    where
        'a: 'b,
        T: Copy,
    {
        let sub_range = crate::segment_to_sub_range(segment, &self.requested_range)?;
        let ptr = self
            .ptr
            .as_ptr()
            .offset((sub_range.start - self.mapping_range.start) as isize);
        let size = (sub_range.end - sub_range.start) as usize;

        let (_pre, slice, _post) = slice::from_raw_parts_mut(ptr, size).align_to_mut();
        let memory = self.memory.raw();
        let flush = self.memory.non_coherent_atom_size.map(|atom| Flush {
            device,
            memory,
            segment: {
                let range = crate::align_range(&sub_range, atom);
                hal::memory::Segment {
                    offset: range.start,
                    size: Some(range.end - range.start),
                }
            },
        });
        Ok(Writer { slice, flush })
    }
}