Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::spinwait::SpinWait;
use crate::thread_parker::{ThreadParker, ThreadParkerT, UnparkHandleT};
use core::{
    cell::Cell,
    mem, ptr,
    sync::atomic::{fence, AtomicUsize, Ordering},
};

struct ThreadData {
    parker: ThreadParker,

    // Linked list of threads in the queue. The queue is split into two parts:
    // the processed part and the unprocessed part. When new nodes are added to
    // the list, they only have the next pointer set, and queue_tail is null.
    //
    // Nodes are processed with the queue lock held, which consists of setting
    // the prev pointer for each node and setting the queue_tail pointer on the
    // first processed node of the list.
    //
    // This setup allows nodes to be added to the queue without a lock, while
    // still allowing O(1) removal of nodes from the processed part of the list.
    // The only cost is the O(n) processing, but this only needs to be done
    // once for each node, and therefore isn't too expensive.
    queue_tail: Cell<*const ThreadData>,
    prev: Cell<*const ThreadData>,
    next: Cell<*const ThreadData>,
}

impl ThreadData {
    #[inline]
    fn new() -> ThreadData {
        assert!(mem::align_of::<ThreadData>() > !QUEUE_MASK);
        ThreadData {
            parker: ThreadParker::new(),
            queue_tail: Cell::new(ptr::null()),
            prev: Cell::new(ptr::null()),
            next: Cell::new(ptr::null()),
        }
    }
}

// Invokes the given closure with a reference to the current thread `ThreadData`.
#[inline]
fn with_thread_data<T>(f: impl FnOnce(&ThreadData) -> T) -> T {
    let mut thread_data_ptr = ptr::null();
    // If ThreadData is expensive to construct, then we want to use a cached
    // version in thread-local storage if possible.
    if !ThreadParker::IS_CHEAP_TO_CONSTRUCT {
        thread_local!(static THREAD_DATA: ThreadData = ThreadData::new());
        if let Ok(tls_thread_data) = THREAD_DATA.try_with(|x| x as *const ThreadData) {
            thread_data_ptr = tls_thread_data;
        }
    }
    // Otherwise just create a ThreadData on the stack
    let mut thread_data_storage = None;
    if thread_data_ptr.is_null() {
        thread_data_ptr = thread_data_storage.get_or_insert_with(ThreadData::new);
    }

    f(unsafe { &*thread_data_ptr })
}

const LOCKED_BIT: usize = 1;
const QUEUE_LOCKED_BIT: usize = 2;
const QUEUE_MASK: usize = !3;

// Word-sized lock that is used to implement the parking_lot API. Since this
// can't use parking_lot, it instead manages its own queue of waiting threads.
pub struct WordLock {
    state: AtomicUsize,
}

impl WordLock {
    pub const INIT: WordLock = WordLock {
        state: AtomicUsize::new(0),
    };

    #[inline]
    pub fn lock(&self) {
        if self
            .state
            .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            return;
        }
        self.lock_slow();
    }

    /// Must not be called on an already unlocked `WordLock`!
    #[inline]
    pub unsafe fn unlock(&self) {
        let state = self.state.fetch_sub(LOCKED_BIT, Ordering::Release);
        if state.is_queue_locked() || state.queue_head().is_null() {
            return;
        }
        self.unlock_slow();
    }

    #[cold]
    fn lock_slow(&self) {
        let mut spinwait = SpinWait::new();
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // Grab the lock if it isn't locked, even if there is a queue on it
            if !state.is_locked() {
                match self.state.compare_exchange_weak(
                    state,
                    state | LOCKED_BIT,
                    Ordering::Acquire,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return,
                    Err(x) => state = x,
                }
                continue;
            }

            // If there is no queue, try spinning a few times
            if state.queue_head().is_null() && spinwait.spin() {
                state = self.state.load(Ordering::Relaxed);
                continue;
            }

            // Get our thread data and prepare it for parking
            state = with_thread_data(|thread_data| {
                // The pthread implementation is still unsafe, so we need to surround `prepare_park`
                // with `unsafe {}`.
                #[allow(unused_unsafe)]
                unsafe {
                    thread_data.parker.prepare_park();
                }

                // Add our thread to the front of the queue
                let queue_head = state.queue_head();
                if queue_head.is_null() {
                    thread_data.queue_tail.set(thread_data);
                    thread_data.prev.set(ptr::null());
                } else {
                    thread_data.queue_tail.set(ptr::null());
                    thread_data.prev.set(ptr::null());
                    thread_data.next.set(queue_head);
                }
                if let Err(x) = self.state.compare_exchange_weak(
                    state,
                    state.with_queue_head(thread_data),
                    Ordering::Release,
                    Ordering::Relaxed,
                ) {
                    return x;
                }

                // Sleep until we are woken up by an unlock
                // Ignoring unused unsafe, since it's only a few platforms where this is unsafe.
                #[allow(unused_unsafe)]
                unsafe {
                    thread_data.parker.park();
                }

                // Loop back and try locking again
                spinwait.reset();
                self.state.load(Ordering::Relaxed)
            });
        }
    }

    #[cold]
    fn unlock_slow(&self) {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // We just unlocked the WordLock. Just check if there is a thread
            // to wake up. If the queue is locked then another thread is already
            // taking care of waking up a thread.
            if state.is_queue_locked() || state.queue_head().is_null() {
                return;
            }

            // Try to grab the queue lock
            match self.state.compare_exchange_weak(
                state,
                state | QUEUE_LOCKED_BIT,
                Ordering::Acquire,
                Ordering::Relaxed,
            ) {
                Ok(_) => break,
                Err(x) => state = x,
            }
        }

        // Now we have the queue lock and the queue is non-empty
        'outer: loop {
            // First, we need to fill in the prev pointers for any newly added
            // threads. We do this until we reach a node that we previously
            // processed, which has a non-null queue_tail pointer.
            let queue_head = state.queue_head();
            let mut queue_tail;
            let mut current = queue_head;
            loop {
                queue_tail = unsafe { (*current).queue_tail.get() };
                if !queue_tail.is_null() {
                    break;
                }
                unsafe {
                    let next = (*current).next.get();
                    (*next).prev.set(current);
                    current = next;
                }
            }

            // Set queue_tail on the queue head to indicate that the whole list
            // has prev pointers set correctly.
            unsafe {
                (*queue_head).queue_tail.set(queue_tail);
            }

            // If the WordLock is locked, then there is no point waking up a
            // thread now. Instead we let the next unlocker take care of waking
            // up a thread.
            if state.is_locked() {
                match self.state.compare_exchange_weak(
                    state,
                    state & !QUEUE_LOCKED_BIT,
                    Ordering::Release,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return,
                    Err(x) => state = x,
                }

                // Need an acquire fence before reading the new queue
                fence(Ordering::Acquire);
                continue;
            }

            // Remove the last thread from the queue and unlock the queue
            let new_tail = unsafe { (*queue_tail).prev.get() };
            if new_tail.is_null() {
                loop {
                    match self.state.compare_exchange_weak(
                        state,
                        state & LOCKED_BIT,
                        Ordering::Release,
                        Ordering::Relaxed,
                    ) {
                        Ok(_) => break,
                        Err(x) => state = x,
                    }

                    // If the compare_exchange failed because a new thread was
                    // added to the queue then we need to re-scan the queue to
                    // find the previous element.
                    if state.queue_head().is_null() {
                        continue;
                    } else {
                        // Need an acquire fence before reading the new queue
                        fence(Ordering::Acquire);
                        continue 'outer;
                    }
                }
            } else {
                unsafe {
                    (*queue_head).queue_tail.set(new_tail);
                }
                self.state.fetch_and(!QUEUE_LOCKED_BIT, Ordering::Release);
            }

            // Finally, wake up the thread we removed from the queue. Note that
            // we don't need to worry about any races here since the thread is
            // guaranteed to be sleeping right now and we are the only one who
            // can wake it up.
            unsafe {
                (*queue_tail).parker.unpark_lock().unpark();
            }
            break;
        }
    }
}

trait LockState {
    fn is_locked(self) -> bool;
    fn is_queue_locked(self) -> bool;
    fn queue_head(self) -> *const ThreadData;
    fn with_queue_head(self, thread_data: *const ThreadData) -> Self;
}

impl LockState for usize {
    #[inline]
    fn is_locked(self) -> bool {
        self & LOCKED_BIT != 0
    }

    #[inline]
    fn is_queue_locked(self) -> bool {
        self & QUEUE_LOCKED_BIT != 0
    }

    #[inline]
    fn queue_head(self) -> *const ThreadData {
        (self & QUEUE_MASK) as *const ThreadData
    }

    #[inline]
    fn with_queue_head(self, thread_data: *const ThreadData) -> Self {
        (self & !QUEUE_MASK) | thread_data as *const _ as usize
    }
}