Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
use std::collections::{
    HashMap,
    BinaryHeap,
};
use std::collections::hash_map::Entry::{
    Occupied,
    Vacant,
};

use std::hash::Hash;

use scored::MinScored;
use super::visit::{
    EdgeRef,
    GraphBase,
    IntoEdges,
    VisitMap,
    Visitable,
};

use algo::Measure;

/// [Generic] A* shortest path algorithm.
///
/// Computes the shortest path from `start` to `finish`, including the total path cost.
///
/// `finish` is implicitly given via the `is_goal` callback, which should return `true` if the
/// given node is the finish node.
///
/// The function `edge_cost` should return the cost for a particular edge. Edge costs must be
/// non-negative.
///
/// The function `estimate_cost` should return the estimated cost to the finish for a particular
/// node. For the algorithm to find the actual shortest path, it should be admissible, meaning that
/// it should never overestimate the actual cost to get to the nearest goal node. Estimate costs
/// must also be non-negative.
///
/// The graph should be `Visitable` and implement `IntoEdges`.
///
/// ```
/// use petgraph::Graph;
/// use petgraph::algo::astar;
///
/// let mut g = Graph::new();
/// let a = g.add_node((0., 0.));
/// let b = g.add_node((2., 0.));
/// let c = g.add_node((1., 1.));
/// let d = g.add_node((0., 2.));
/// let e = g.add_node((3., 3.));
/// let f = g.add_node((4., 2.));
/// g.extend_with_edges(&[
///     (a, b, 2),
///     (a, d, 4),
///     (b, c, 1),
///     (b, f, 7),
///     (c, e, 5),
///     (e, f, 1),
///     (d, e, 1),
/// ]);
///
/// let path = astar(&g, a, |finish| finish == f, |e| *e.weight(), |_| 0);
/// assert_eq!(path, Some((6, vec![a, d, e, f])));
/// ```
///
/// Returns the total cost + the path of subsequent `NodeId` from start to finish, if one was
/// found.
pub fn astar<G, F, H, K, IsGoal>(graph: G, start: G::NodeId, mut is_goal: IsGoal,
                                     mut edge_cost: F, mut estimate_cost: H)
    -> Option<(K, Vec<G::NodeId>)>
    where G: IntoEdges + Visitable,
          IsGoal: FnMut(G::NodeId) -> bool,
          G::NodeId: Eq + Hash,
          F: FnMut(G::EdgeRef) -> K,
          H: FnMut(G::NodeId) -> K,
          K: Measure + Copy,
{
    let mut visited = graph.visit_map();
    let mut visit_next = BinaryHeap::new();
    let mut scores = HashMap::new();
    let mut path_tracker = PathTracker::<G>::new();

    let zero_score = K::default();
    scores.insert(start, zero_score);
    visit_next.push(MinScored(estimate_cost(start), start));

    while let Some(MinScored(_, node)) = visit_next.pop() {
        if is_goal(node) {
            let path = path_tracker.reconstruct_path_to(node);
            let cost = scores[&node];
            return Some((cost, path));
        }

        // Don't visit the same node several times, as the first time it was visited it was using
        // the shortest available path.
        if !visited.visit(node) {
            continue
        }

        // This lookup can be unwrapped without fear of panic since the node was necessarily scored
        // before adding him to `visit_next`.
        let node_score = scores[&node];

        for edge in graph.edges(node) {
            let next = edge.target();
            if visited.is_visited(&next) {
                continue
            }

            let mut next_score = node_score + edge_cost(edge);

            match scores.entry(next) {
                Occupied(ent) => {
                    let old_score = *ent.get();
                    if next_score < old_score {
                        *ent.into_mut() = next_score;
                        path_tracker.set_predecessor(next, node);
                    } else {
                        next_score = old_score;
                    }
                },
                Vacant(ent) => {
                    ent.insert(next_score);
                    path_tracker.set_predecessor(next, node);
                }
            }

            let next_estimate_score = next_score + estimate_cost(next);
            visit_next.push(MinScored(next_estimate_score, next));
        }
    }

    None
}

struct PathTracker<G>
    where G: GraphBase,
          G::NodeId: Eq + Hash,
{
    came_from: HashMap<G::NodeId, G::NodeId>,
}

impl<G> PathTracker<G>
    where G: GraphBase,
          G::NodeId: Eq + Hash,
{
    fn new() -> PathTracker<G> {
        PathTracker {
            came_from: HashMap::new(),
        }
    }

    fn set_predecessor(&mut self, node: G::NodeId, previous: G::NodeId) {
        self.came_from.insert(node, previous);
    }

    fn reconstruct_path_to(&self, last: G::NodeId) -> Vec<G::NodeId> {
        let mut path = vec![last];

        let mut current = last;
        while let Some(&previous) = self.came_from.get(&current) {
            path.push(previous);
            current = previous;
        }

        path.reverse();

        path
    }
}