1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use std::{ops::Range, ptr::NonNull};
use {
crate::{
allocator::{Allocator, Kind},
block::Block,
mapping::{mapped_fitting_range, MappedRange},
memory::*,
},
gfx_hal::{device::Device as _, Backend},
};
#[derive(Debug)]
pub struct DedicatedBlock<B: Backend> {
memory: Memory<B>,
mapping: Option<(NonNull<u8>, Range<u64>)>,
}
unsafe impl<B> Send for DedicatedBlock<B> where B: Backend {}
unsafe impl<B> Sync for DedicatedBlock<B> where B: Backend {}
impl<B> DedicatedBlock<B>
where
B: Backend,
{
pub fn unwrap_memory(self) -> Memory<B> {
assert!(self.mapping.is_none());
self.memory
}
pub fn from_memory(memory: Memory<B>) -> Self {
DedicatedBlock {
memory,
mapping: None,
}
}
}
impl<B> Block<B> for DedicatedBlock<B>
where
B: Backend,
{
#[inline]
fn properties(&self) -> gfx_hal::memory::Properties {
self.memory.properties()
}
#[inline]
fn memory(&self) -> &B::Memory {
self.memory.raw()
}
#[inline]
fn range(&self) -> Range<u64> {
0..self.memory.size()
}
fn map<'a>(
&'a mut self,
device: &B::Device,
range: Range<u64>,
) -> Result<MappedRange<'a, B>, gfx_hal::device::MapError> {
assert!(
range.start < range.end,
"Memory mapping region must have valid size"
);
if !self.memory.host_visible() {
return Err(gfx_hal::device::MapError::MappingFailed);
}
unsafe {
if let Some(ptr) = self
.mapping
.clone()
.and_then(|mapping| mapped_fitting_range(mapping.0, mapping.1, range.clone()))
{
Ok(MappedRange::from_raw(&self.memory, ptr, range))
} else {
self.unmap(device);
let ptr = device.map_memory(self.memory.raw(), range.clone())?;
let ptr = NonNull::new(ptr).expect("Memory mapping shouldn't return nullptr");
let mapping = MappedRange::from_raw(&self.memory, ptr, range);
self.mapping = Some((mapping.ptr(), mapping.range()));
Ok(mapping)
}
}
}
fn unmap(&mut self, device: &B::Device) {
if self.mapping.take().is_some() {
unsafe {
device.unmap_memory(self.memory.raw());
}
}
}
}
#[derive(Debug)]
pub struct DedicatedAllocator {
memory_type: gfx_hal::MemoryTypeId,
memory_properties: gfx_hal::memory::Properties,
used: u64,
}
impl DedicatedAllocator {
pub fn properties_required() -> gfx_hal::memory::Properties {
gfx_hal::memory::Properties::empty()
}
pub fn new(
memory_type: gfx_hal::MemoryTypeId,
memory_properties: gfx_hal::memory::Properties,
) -> Self {
DedicatedAllocator {
memory_type,
memory_properties,
used: 0,
}
}
}
impl<B> Allocator<B> for DedicatedAllocator
where
B: Backend,
{
type Block = DedicatedBlock<B>;
fn kind() -> Kind {
Kind::Dedicated
}
#[inline]
fn alloc(
&mut self,
device: &B::Device,
size: u64,
_align: u64,
) -> Result<(DedicatedBlock<B>, u64), gfx_hal::device::AllocationError> {
let memory = unsafe {
Memory::from_raw(
device.allocate_memory(self.memory_type, size)?,
size,
self.memory_properties,
)
};
self.used += size;
Ok((DedicatedBlock::from_memory(memory), size))
}
#[inline]
fn free(&mut self, device: &B::Device, mut block: DedicatedBlock<B>) -> u64 {
block.unmap(device);
let size = block.memory.size();
self.used -= size;
unsafe {
device.free_memory(block.memory.into_raw());
}
size
}
}
impl Drop for DedicatedAllocator {
fn drop(&mut self) {
if self.used > 0 {
log::error!("Not all allocation from DedicatedAllocator was freed");
}
}
}