Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//! A stably addressed token buffer supporting efficient traversal based on a
//! cheaply copyable cursor.
//!
//! *This module is available only if Syn is built with the `"parsing"` feature.*

// This module is heavily commented as it contains most of the unsafe code in
// Syn, and caution should be used when editing it. The public-facing interface
// is 100% safe but the implementation is fragile internally.

#[cfg(all(
    not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
    feature = "proc-macro"
))]
use crate::proc_macro as pm;
use crate::Lifetime;
use proc_macro2::{Delimiter, Group, Ident, Literal, Punct, Spacing, Span, TokenStream, TokenTree};
use std::marker::PhantomData;
use std::ptr;

/// Internal type which is used instead of `TokenTree` to represent a token tree
/// within a `TokenBuffer`.
enum Entry {
    // Mimicking types from proc-macro.
    Group(Group, TokenBuffer),
    Ident(Ident),
    Punct(Punct),
    Literal(Literal),
    // End entries contain a raw pointer to the entry from the containing
    // token tree, or null if this is the outermost level.
    End(*const Entry),
}

/// A buffer that can be efficiently traversed multiple times, unlike
/// `TokenStream` which requires a deep copy in order to traverse more than
/// once.
///
/// *This type is available only if Syn is built with the `"parsing"` feature.*
pub struct TokenBuffer {
    // NOTE: Do not derive clone on this - there are raw pointers inside which
    // will be messed up. Moving the `TokenBuffer` itself is safe as the actual
    // backing slices won't be moved.
    data: Box<[Entry]>,
}

impl TokenBuffer {
    // NOTE: DO NOT MUTATE THE `Vec` RETURNED FROM THIS FUNCTION ONCE IT
    // RETURNS, THE ADDRESS OF ITS BACKING MEMORY MUST REMAIN STABLE.
    fn inner_new(stream: TokenStream, up: *const Entry) -> TokenBuffer {
        // Build up the entries list, recording the locations of any Groups
        // in the list to be processed later.
        let mut entries = Vec::new();
        let mut seqs = Vec::new();
        for tt in stream {
            match tt {
                TokenTree::Ident(sym) => {
                    entries.push(Entry::Ident(sym));
                }
                TokenTree::Punct(op) => {
                    entries.push(Entry::Punct(op));
                }
                TokenTree::Literal(l) => {
                    entries.push(Entry::Literal(l));
                }
                TokenTree::Group(g) => {
                    // Record the index of the interesting entry, and store an
                    // `End(null)` there temporarially.
                    seqs.push((entries.len(), g));
                    entries.push(Entry::End(ptr::null()));
                }
            }
        }
        // Add an `End` entry to the end with a reference to the enclosing token
        // stream which was passed in.
        entries.push(Entry::End(up));

        // NOTE: This is done to ensure that we don't accidentally modify the
        // length of the backing buffer. The backing buffer must remain at a
        // constant address after this point, as we are going to store a raw
        // pointer into it.
        let mut entries = entries.into_boxed_slice();
        for (idx, group) in seqs {
            // We know that this index refers to one of the temporary
            // `End(null)` entries, and we know that the last entry is
            // `End(up)`, so the next index is also valid.
            let seq_up = &entries[idx + 1] as *const Entry;

            // The end entry stored at the end of this Entry::Group should
            // point to the Entry which follows the Group in the list.
            let inner = Self::inner_new(group.stream(), seq_up);
            entries[idx] = Entry::Group(group, inner);
        }

        TokenBuffer { data: entries }
    }

    /// Creates a `TokenBuffer` containing all the tokens from the input
    /// `TokenStream`.
    ///
    /// *This method is available only if Syn is built with both the `"parsing"` and
    /// `"proc-macro"` features.*
    #[cfg(all(
        not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
        feature = "proc-macro"
    ))]
    pub fn new(stream: pm::TokenStream) -> TokenBuffer {
        Self::new2(stream.into())
    }

    /// Creates a `TokenBuffer` containing all the tokens from the input
    /// `TokenStream`.
    pub fn new2(stream: TokenStream) -> TokenBuffer {
        Self::inner_new(stream, ptr::null())
    }

    /// Creates a cursor referencing the first token in the buffer and able to
    /// traverse until the end of the buffer.
    pub fn begin(&self) -> Cursor {
        unsafe { Cursor::create(&self.data[0], &self.data[self.data.len() - 1]) }
    }
}

/// A cheaply copyable cursor into a `TokenBuffer`.
///
/// This cursor holds a shared reference into the immutable data which is used
/// internally to represent a `TokenStream`, and can be efficiently manipulated
/// and copied around.
///
/// An empty `Cursor` can be created directly, or one may create a `TokenBuffer`
/// object and get a cursor to its first token with `begin()`.
///
/// Two cursors are equal if they have the same location in the same input
/// stream, and have the same scope.
///
/// *This type is available only if Syn is built with the `"parsing"` feature.*
pub struct Cursor<'a> {
    // The current entry which the `Cursor` is pointing at.
    ptr: *const Entry,
    // This is the only `Entry::End(..)` object which this cursor is allowed to
    // point at. All other `End` objects are skipped over in `Cursor::create`.
    scope: *const Entry,
    // Cursor is covariant in 'a. This field ensures that our pointers are still
    // valid.
    marker: PhantomData<&'a Entry>,
}

impl<'a> Cursor<'a> {
    /// Creates a cursor referencing a static empty TokenStream.
    pub fn empty() -> Self {
        // It's safe in this situation for us to put an `Entry` object in global
        // storage, despite it not actually being safe to send across threads
        // (`Ident` is a reference into a thread-local table). This is because
        // this entry never includes a `Ident` object.
        //
        // This wrapper struct allows us to break the rules and put a `Sync`
        // object in global storage.
        struct UnsafeSyncEntry(Entry);
        unsafe impl Sync for UnsafeSyncEntry {}
        static EMPTY_ENTRY: UnsafeSyncEntry = UnsafeSyncEntry(Entry::End(0 as *const Entry));

        Cursor {
            ptr: &EMPTY_ENTRY.0,
            scope: &EMPTY_ENTRY.0,
            marker: PhantomData,
        }
    }

    /// This create method intelligently exits non-explicitly-entered
    /// `None`-delimited scopes when the cursor reaches the end of them,
    /// allowing for them to be treated transparently.
    unsafe fn create(mut ptr: *const Entry, scope: *const Entry) -> Self {
        // NOTE: If we're looking at a `End(..)`, we want to advance the cursor
        // past it, unless `ptr == scope`, which means that we're at the edge of
        // our cursor's scope. We should only have `ptr != scope` at the exit
        // from None-delimited groups entered with `ignore_none`.
        while let Entry::End(exit) = *ptr {
            if ptr == scope {
                break;
            }
            ptr = exit;
        }

        Cursor {
            ptr,
            scope,
            marker: PhantomData,
        }
    }

    /// Get the current entry.
    fn entry(self) -> &'a Entry {
        unsafe { &*self.ptr }
    }

    /// Bump the cursor to point at the next token after the current one. This
    /// is undefined behavior if the cursor is currently looking at an
    /// `Entry::End`.
    unsafe fn bump(self) -> Cursor<'a> {
        Cursor::create(self.ptr.offset(1), self.scope)
    }

    /// While the cursor is looking at a `None`-delimited group, move it to look
    /// at the first token inside instead. If the group is empty, this will move
    /// the cursor past the `None`-delimited group.
    ///
    /// WARNING: This mutates its argument.
    fn ignore_none(&mut self) {
        while let Entry::Group(group, buf) = self.entry() {
            if group.delimiter() == Delimiter::None {
                // NOTE: We call `Cursor::create` here to make sure that
                // situations where we should immediately exit the span after
                // entering it are handled correctly.
                unsafe {
                    *self = Cursor::create(&buf.data[0], self.scope);
                }
            } else {
                break;
            }
        }
    }

    /// Checks whether the cursor is currently pointing at the end of its valid
    /// scope.
    pub fn eof(self) -> bool {
        // We're at eof if we're at the end of our scope.
        self.ptr == self.scope
    }

    /// If the cursor is pointing at a `Group` with the given delimiter, returns
    /// a cursor into that group and one pointing to the next `TokenTree`.
    pub fn group(mut self, delim: Delimiter) -> Option<(Cursor<'a>, Span, Cursor<'a>)> {
        // If we're not trying to enter a none-delimited group, we want to
        // ignore them. We have to make sure to _not_ ignore them when we want
        // to enter them, of course. For obvious reasons.
        if delim != Delimiter::None {
            self.ignore_none();
        }

        if let Entry::Group(group, buf) = self.entry() {
            if group.delimiter() == delim {
                return Some((buf.begin(), group.span(), unsafe { self.bump() }));
            }
        }

        None
    }

    /// If the cursor is pointing at a `Ident`, returns it along with a cursor
    /// pointing at the next `TokenTree`.
    pub fn ident(mut self) -> Option<(Ident, Cursor<'a>)> {
        self.ignore_none();
        match self.entry() {
            Entry::Ident(ident) => Some((ident.clone(), unsafe { self.bump() })),
            _ => None,
        }
    }

    /// If the cursor is pointing at an `Punct`, returns it along with a cursor
    /// pointing at the next `TokenTree`.
    pub fn punct(mut self) -> Option<(Punct, Cursor<'a>)> {
        self.ignore_none();
        match self.entry() {
            Entry::Punct(op) if op.as_char() != '\'' => Some((op.clone(), unsafe { self.bump() })),
            _ => None,
        }
    }

    /// If the cursor is pointing at a `Literal`, return it along with a cursor
    /// pointing at the next `TokenTree`.
    pub fn literal(mut self) -> Option<(Literal, Cursor<'a>)> {
        self.ignore_none();
        match self.entry() {
            Entry::Literal(lit) => Some((lit.clone(), unsafe { self.bump() })),
            _ => None,
        }
    }

    /// If the cursor is pointing at a `Lifetime`, returns it along with a
    /// cursor pointing at the next `TokenTree`.
    pub fn lifetime(mut self) -> Option<(Lifetime, Cursor<'a>)> {
        self.ignore_none();
        match self.entry() {
            Entry::Punct(op) if op.as_char() == '\'' && op.spacing() == Spacing::Joint => {
                let next = unsafe { self.bump() };
                match next.ident() {
                    Some((ident, rest)) => {
                        let lifetime = Lifetime {
                            apostrophe: op.span(),
                            ident,
                        };
                        Some((lifetime, rest))
                    }
                    None => None,
                }
            }
            _ => None,
        }
    }

    /// Copies all remaining tokens visible from this cursor into a
    /// `TokenStream`.
    pub fn token_stream(self) -> TokenStream {
        let mut tts = Vec::new();
        let mut cursor = self;
        while let Some((tt, rest)) = cursor.token_tree() {
            tts.push(tt);
            cursor = rest;
        }
        tts.into_iter().collect()
    }

    /// If the cursor is pointing at a `TokenTree`, returns it along with a
    /// cursor pointing at the next `TokenTree`.
    ///
    /// Returns `None` if the cursor has reached the end of its stream.
    ///
    /// This method does not treat `None`-delimited groups as transparent, and
    /// will return a `Group(None, ..)` if the cursor is looking at one.
    pub fn token_tree(self) -> Option<(TokenTree, Cursor<'a>)> {
        let tree = match self.entry() {
            Entry::Group(group, _) => group.clone().into(),
            Entry::Literal(lit) => lit.clone().into(),
            Entry::Ident(ident) => ident.clone().into(),
            Entry::Punct(op) => op.clone().into(),
            Entry::End(..) => {
                return None;
            }
        };

        Some((tree, unsafe { self.bump() }))
    }

    /// Returns the `Span` of the current token, or `Span::call_site()` if this
    /// cursor points to eof.
    pub fn span(self) -> Span {
        match self.entry() {
            Entry::Group(group, _) => group.span(),
            Entry::Literal(l) => l.span(),
            Entry::Ident(t) => t.span(),
            Entry::Punct(o) => o.span(),
            Entry::End(..) => Span::call_site(),
        }
    }

    /// Skip over the next token without cloning it. Returns `None` if this
    /// cursor points to eof.
    ///
    /// This method treats `'lifetimes` as a single token.
    pub(crate) fn skip(self) -> Option<Cursor<'a>> {
        match self.entry() {
            Entry::End(..) => None,

            // Treat lifetimes as a single tt for the purposes of 'skip'.
            Entry::Punct(op) if op.as_char() == '\'' && op.spacing() == Spacing::Joint => {
                let next = unsafe { self.bump() };
                match next.entry() {
                    Entry::Ident(_) => Some(unsafe { next.bump() }),
                    _ => Some(next),
                }
            }
            _ => Some(unsafe { self.bump() }),
        }
    }
}

impl<'a> Copy for Cursor<'a> {}

impl<'a> Clone for Cursor<'a> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a> Eq for Cursor<'a> {}

impl<'a> PartialEq for Cursor<'a> {
    fn eq(&self, other: &Self) -> bool {
        let Cursor { ptr, scope, marker } = self;
        let _ = marker;
        *ptr == other.ptr && *scope == other.scope
    }
}

pub(crate) fn same_scope(a: Cursor, b: Cursor) -> bool {
    a.scope == b.scope
}

pub(crate) fn open_span_of_group(cursor: Cursor) -> Span {
    match cursor.entry() {
        Entry::Group(group, _) => group.span_open(),
        _ => cursor.span(),
    }
}

pub(crate) fn close_span_of_group(cursor: Cursor) -> Span {
    match cursor.entry() {
        Entry::Group(group, _) => group.span_close(),
        _ => cursor.span(),
    }
}