Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
// https://docs.microsoft.com/en-us/typography/opentype/spec/glyf

use core::num::NonZeroU16;

use crate::parser::{Stream, F2DOT14, LazyArray16, NumFrom};
use crate::{loca, GlyphId, OutlineBuilder, Rect, BBox};

pub(crate) struct Builder<'a> {
    pub builder: &'a mut dyn OutlineBuilder,
    pub transform: Transform,
    is_default_ts: bool, // `bool` is faster than `Option` or `is_default`.
    pub bbox: Option<BBox>, // Used only by `gvar`.
    first_on_curve: Option<Point>,
    first_off_curve: Option<Point>,
    last_off_curve: Option<Point>,
}

impl<'a> Builder<'a> {
    #[inline]
    pub fn new(
        transform: Transform,
        bbox: Option<BBox>,
        builder: &'a mut dyn OutlineBuilder,
    ) -> Self {
        Builder {
            builder,
            transform,
            is_default_ts: transform.is_default(),
            bbox,
            first_on_curve: None,
            first_off_curve: None,
            last_off_curve: None,
        }
    }

    #[inline]
    fn move_to(&mut self, mut x: f32, mut y: f32) {
        if !self.is_default_ts {
            self.transform.apply_to(&mut x, &mut y);
        }

        if let Some(ref mut bbox) = self.bbox {
            bbox.extend_by(x, y);
        }

        self.builder.move_to(x, y);
    }

    #[inline]
    fn line_to(&mut self, mut x: f32, mut y: f32) {
        if !self.is_default_ts {
            self.transform.apply_to(&mut x, &mut y);
        }

        if let Some(ref mut bbox) = self.bbox {
            bbox.extend_by(x, y);
        }

        self.builder.line_to(x, y);
    }

    #[inline]
    fn quad_to(&mut self, mut x1: f32, mut y1: f32, mut x: f32, mut y: f32) {
        if !self.is_default_ts {
            self.transform.apply_to(&mut x1, &mut y1);
            self.transform.apply_to(&mut x, &mut y);
        }

        if let Some(ref mut bbox) = self.bbox {
            bbox.extend_by(x1, y1);
            bbox.extend_by(x, y);
        }

        self.builder.quad_to(x1, y1, x, y);
    }

    // Useful links:
    //
    // - https://developer.apple.com/fonts/TrueType-Reference-Manual/RM01/Chap1.html
    // - https://stackoverflow.com/a/20772557
    #[inline]
    pub fn push_point(&mut self, x: f32, y: f32, on_curve_point: bool, last_point: bool) {
        let p = Point { x, y };
        if self.first_on_curve.is_none() {
            if on_curve_point {
                self.first_on_curve = Some(p);
                self.move_to(p.x, p.y);
            } else {
                if let Some(offcurve) = self.first_off_curve {
                    let mid = offcurve.lerp(p, 0.5);
                    self.first_on_curve = Some(mid);
                    self.last_off_curve = Some(p);
                    self.move_to(mid.x, mid.y);
                } else {
                    self.first_off_curve = Some(p);
                }
            }
        } else {
            match (self.last_off_curve, on_curve_point) {
                (Some(offcurve), true) => {
                    self.last_off_curve = None;
                    self.quad_to(offcurve.x, offcurve.y, p.x, p.y);
                }
                (Some(offcurve), false) => {
                    self.last_off_curve = Some(p);
                    let mid = offcurve.lerp(p, 0.5);
                    self.quad_to(offcurve.x, offcurve.y, mid.x, mid.y);
                }
                (None, true) => {
                    self.line_to(p.x, p.y);
                }
                (None, false) => {
                    self.last_off_curve = Some(p);
                }
            }
        }

        if last_point {
            self.finish_contour();
        }
    }

    #[inline]
    fn finish_contour(&mut self) {
        if let (Some(offcurve1), Some(offcurve2)) = (self.first_off_curve, self.last_off_curve) {
            self.last_off_curve = None;
            let mid = offcurve2.lerp(offcurve1, 0.5);
            self.quad_to(offcurve2.x, offcurve2.y, mid.x, mid.y);
        }

        if let (Some(p), Some(offcurve1)) = (self.first_on_curve, self.first_off_curve) {
            self.quad_to(offcurve1.x, offcurve1.y, p.x, p.y);
        } else if let (Some(p), Some(offcurve2)) = (self.first_on_curve, self.last_off_curve) {
            self.quad_to(offcurve2.x, offcurve2.y, p.x, p.y);
        } else if let Some(p) = self.first_on_curve {
            self.line_to(p.x, p.y);
        }

        self.first_on_curve = None;
        self.first_off_curve = None;
        self.last_off_curve = None;

        self.builder.close();
    }
}


#[derive(Clone, Copy)]
pub struct Transform {
    pub a: f32, pub b: f32, pub c: f32,
    pub d: f32, pub e: f32, pub f: f32,
}

impl Transform {
    #[inline]
    pub fn new_translate(tx: f32, ty: f32) -> Self {
        Transform { a: 1.0, b: 0.0, c: 0.0, d: 1.0, e: tx, f: ty }
    }

    #[inline]
    pub fn combine(ts1: Self, ts2: Self) -> Self {
        Transform {
            a: ts1.a * ts2.a + ts1.c * ts2.b,
            b: ts1.b * ts2.a + ts1.d * ts2.b,
            c: ts1.a * ts2.c + ts1.c * ts2.d,
            d: ts1.b * ts2.c + ts1.d * ts2.d,
            e: ts1.a * ts2.e + ts1.c * ts2.f + ts1.e,
            f: ts1.b * ts2.e + ts1.d * ts2.f + ts1.f,
        }
    }

    #[inline]
    fn apply_to(&self, x: &mut f32, y: &mut f32) {
        let tx = *x;
        let ty = *y;
        *x = self.a * tx + self.c * ty + self.e;
        *y = self.b * tx + self.d * ty + self.f;
    }

    #[inline]
    fn is_default(&self) -> bool {
        // A direct float comparison is fine in our case.
           self.a == 1.0
        && self.b == 0.0
        && self.c == 0.0
        && self.d == 1.0
        && self.e == 0.0
        && self.f == 0.0
    }
}

impl Default for Transform {
    #[inline]
    fn default() -> Self {
        Transform { a: 1.0, b: 0.0, c: 0.0, d: 1.0, e: 0.0, f: 0.0 }
    }
}

impl core::fmt::Debug for Transform {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "Transform({} {} {} {} {} {})", self.a, self.b, self.c, self.d, self.e, self.f)
    }
}


#[derive(Clone, Copy, Debug)]
pub(crate) struct CompositeGlyphInfo {
    pub glyph_id: GlyphId,
    pub transform: Transform,
    pub flags: CompositeGlyphFlags,
}


#[derive(Clone)]
pub(crate) struct CompositeGlyphIter<'a> {
    stream: Stream<'a>,
}

impl<'a> CompositeGlyphIter<'a> {
    #[inline]
    pub fn new(data: &'a [u8]) -> Self {
        CompositeGlyphIter { stream: Stream::new(data) }
    }
}

impl<'a> Iterator for CompositeGlyphIter<'a> {
    type Item = CompositeGlyphInfo;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let flags = CompositeGlyphFlags(self.stream.read()?);
        let glyph_id: GlyphId = self.stream.read()?;

        let mut ts = Transform::default();

        if flags.args_are_xy_values() {
            if flags.arg_1_and_2_are_words() {
                ts.e = f32::from(self.stream.read::<i16>()?);
                ts.f = f32::from(self.stream.read::<i16>()?);
            } else {
                ts.e = f32::from(self.stream.read::<i8>()?);
                ts.f = f32::from(self.stream.read::<i8>()?);
            }
        }

        if flags.we_have_a_two_by_two() {
            ts.a = self.stream.read::<F2DOT14>()?.to_f32();
            ts.b = self.stream.read::<F2DOT14>()?.to_f32();
            ts.c = self.stream.read::<F2DOT14>()?.to_f32();
            ts.d = self.stream.read::<F2DOT14>()?.to_f32();
        } else if flags.we_have_an_x_and_y_scale() {
            ts.a = self.stream.read::<F2DOT14>()?.to_f32();
            ts.d = self.stream.read::<F2DOT14>()?.to_f32();
        } else if flags.we_have_a_scale() {
            ts.a = self.stream.read::<F2DOT14>()?.to_f32();
            ts.d = ts.a;
        }

        if !flags.more_components() {
            // Finish the iterator even if stream still has some data.
            self.stream.jump_to_end();
        }

        Some(CompositeGlyphInfo {
            glyph_id,
            transform: ts,
            flags,
        })
    }
}


// Due to some optimization magic, using f32 instead of i16
// makes the code ~10% slower. At least on my machine.
// I guess it's due to the fact that with i16 the struct
// fits into the machine word.
#[derive(Clone, Copy, Debug)]
pub struct GlyphPoint {
    pub x: i16,
    pub y: i16,
    /// Indicates that a point is a point on curve
    /// and not a control point.
    pub on_curve_point: bool,
    pub last_point: bool,
}


#[derive(Clone, Default)]
pub struct GlyphPointsIter<'a> {
    endpoints: EndpointsIter<'a>,
    flags: FlagsIter<'a>,
    x_coords: CoordsIter<'a>,
    y_coords: CoordsIter<'a>,
    pub points_left: u16, // Number of points left in the glyph.
}

impl GlyphPointsIter<'_> {
    #[inline]
    pub fn current_contour(&self) -> u16 {
        self.endpoints.index - 1
    }
}

impl<'a> Iterator for GlyphPointsIter<'a> {
    type Item = GlyphPoint;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.points_left = self.points_left.checked_sub(1)?;

        // TODO: skip empty contours

        let last_point = self.endpoints.next();
        let flags = self.flags.next()?;
        Some(GlyphPoint {
            x: self.x_coords.next(flags.x_short(), flags.x_is_same_or_positive_short()),
            y: self.y_coords.next(flags.y_short(), flags.y_is_same_or_positive_short()),
            on_curve_point: flags.on_curve_point(),
            last_point,
        })
    }
}


/// A simple flattening iterator for glyph's endpoints.
///
/// Translates endpoints like: 2 4 7
/// into flags: 0 0 1 0 1 0 0 1
#[derive(Clone, Copy, Default)]
struct EndpointsIter<'a> {
    endpoints: LazyArray16<'a, u16>, // Each endpoint indicates a contour end.
    index: u16,
    left: u16,
}

impl<'a> EndpointsIter<'a> {
    #[inline]
    fn new(endpoints: LazyArray16<'a, u16>) -> Option<Self> {
        Some(EndpointsIter {
            endpoints,
            index: 1,
            left: endpoints.get(0)?,
        })
    }

    #[inline]
    fn next(&mut self) -> bool {
        if self.left == 0 {
            if let Some(end) = self.endpoints.get(self.index) {
                let prev = self.endpoints.get(self.index - 1).unwrap_or(0);
                // Malformed font can have endpoints not in increasing order,
                // so we have to use checked_sub.
                self.left = end.checked_sub(prev).unwrap_or(0);
                self.left = self.left.checked_sub(1).unwrap_or(0);
            }

            // Always advance the index, so we can check the current contour number.
            if let Some(n) = self.index.checked_add(1) {
                self.index = n;
            }

            true
        } else {
            self.left -= 1;
            false
        }
    }
}


#[derive(Clone, Default)]
struct FlagsIter<'a> {
    stream: Stream<'a>,
    // Number of times the `flags` should be used
    // before reading the next one from `stream`.
    repeats: u8,
    flags: SimpleGlyphFlags,
}

impl<'a> FlagsIter<'a> {
    #[inline]
    fn new(data: &'a [u8]) -> Self {
        FlagsIter {
            stream: Stream::new(data),
            repeats: 0,
            flags: SimpleGlyphFlags(0),
        }
    }
}

impl<'a> Iterator for FlagsIter<'a> {
    type Item = SimpleGlyphFlags;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.repeats == 0 {
            self.flags = SimpleGlyphFlags(self.stream.read().unwrap_or_default());
            if self.flags.repeat_flag() {
                self.repeats = self.stream.read().unwrap_or(0);
            }
        } else {
            self.repeats -= 1;
        }

        Some(self.flags)
    }
}


#[derive(Clone, Default)]
struct CoordsIter<'a> {
    stream: Stream<'a>,
    prev: i16, // Points are stored as deltas, so we have to keep the previous one.
}

impl<'a> CoordsIter<'a> {
    #[inline]
    fn new(data: &'a [u8]) -> Self {
        CoordsIter {
            stream: Stream::new(data),
            prev: 0,
        }
    }

    #[inline]
    fn next(&mut self, is_short: bool, is_same_or_short: bool) -> i16 {
        // See https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#simple-glyph-description
        // for details about Simple Glyph Flags processing.

        // We've already checked the coords data, so it's safe to fallback to 0.

        let mut n = 0;
        if is_short {
            n = i16::from(self.stream.read::<u8>().unwrap_or(0));
            if !is_same_or_short {
                n = -n;
            }
        } else if !is_same_or_short {
            n = self.stream.read::<i16>().unwrap_or(0);
        }

        self.prev = self.prev.wrapping_add(n);
        self.prev
    }
}


#[derive(Clone, Copy, Debug)]
struct Point {
    x: f32,
    y: f32,
}

impl Point {
    #[inline]
    fn lerp(self, other: Point, t: f32) -> Point {
        Point {
            x: self.x + t * (other.x - self.x),
            y: self.y + t * (other.y - self.y),
        }
    }
}


// https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#simple-glyph-description
#[derive(Clone, Copy, Default)]
struct SimpleGlyphFlags(u8);

impl SimpleGlyphFlags {
    #[inline] fn on_curve_point(self) -> bool { self.0 & 0x01 != 0 }
    #[inline] fn x_short(self) -> bool { self.0 & 0x02 != 0 }
    #[inline] fn y_short(self) -> bool { self.0 & 0x04 != 0 }
    #[inline] fn repeat_flag(self) -> bool { self.0 & 0x08 != 0 }
    #[inline] fn x_is_same_or_positive_short(self) -> bool { self.0 & 0x10 != 0 }
    #[inline] fn y_is_same_or_positive_short(self) -> bool { self.0 & 0x20 != 0 }
}


// https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#composite-glyph-description
#[derive(Clone, Copy, Debug)]
pub(crate) struct CompositeGlyphFlags(u16);

impl CompositeGlyphFlags {
    #[inline] pub fn arg_1_and_2_are_words(self) -> bool { self.0 & 0x0001 != 0 }
    #[inline] pub fn args_are_xy_values(self) -> bool { self.0 & 0x0002 != 0 }
    #[inline] pub fn we_have_a_scale(self) -> bool { self.0 & 0x0008 != 0 }
    #[inline] pub fn more_components(self) -> bool { self.0 & 0x0020 != 0 }
    #[inline] pub fn we_have_an_x_and_y_scale(self) -> bool { self.0 & 0x0040 != 0 }
    #[inline] pub fn we_have_a_two_by_two(self) -> bool { self.0 & 0x0080 != 0 }
}


// It's not defined in the spec, so we are using our own value.
pub const MAX_COMPONENTS: u8 = 32;

#[inline]
pub(crate) fn outline(
    loca_table: loca::Table,
    glyf_table: &[u8],
    glyph_id: GlyphId,
    builder: &mut dyn OutlineBuilder,
) -> Option<Rect> {
    let mut b = Builder::new(Transform::default(), None, builder);
    let range = loca_table.glyph_range(glyph_id)?;
    let glyph_data = glyf_table.get(range)?;
    outline_impl(loca_table, glyf_table, glyph_data, 0, &mut b)
}

#[inline]
pub(crate) fn glyph_bbox(
    loca_table: loca::Table,
    glyf_table: &[u8],
    glyph_id: GlyphId,
) -> Option<Rect> {
    let range = loca_table.glyph_range(glyph_id)?;
    let glyph_data = glyf_table.get(range)?;
    let mut s = Stream::new(glyph_data);
    s.skip::<i16>(); // number_of_contours
    // It's faster to parse the rect directly, instead of using `FromData`.
    Some(Rect {
        x_min: s.read()?,
        y_min: s.read()?,
        x_max: s.read()?,
        y_max: s.read()?,
    })
}

#[inline]
fn outline_impl(
    loca_table: loca::Table,
    glyf_table: &[u8],
    data: &[u8],
    depth: u8,
    builder: &mut Builder,
) -> Option<Rect> {
    if depth >= MAX_COMPONENTS {
        return None;
    }

    let mut s = Stream::new(data);
    let number_of_contours: i16 = s.read()?;
    // It's faster to parse the rect directly, instead of using `FromData`.
    let rect = Rect {
        x_min: s.read()?,
        y_min: s.read()?,
        x_max: s.read()?,
        y_max: s.read()?,
    };

    if number_of_contours > 0 {
        // Simple glyph.

        // u16 casting is safe, since we already checked that the value is positive.
        let number_of_contours = NonZeroU16::new(number_of_contours as u16)?;
        for point in parse_simple_outline(s.tail()?, number_of_contours)? {
            builder.push_point(f32::from(point.x), f32::from(point.y),
                               point.on_curve_point, point.last_point);
        }
    } else if number_of_contours < 0 {
        // Composite glyph.
        for comp in CompositeGlyphIter::new(s.tail()?) {
            if let Some(range) = loca_table.glyph_range(comp.glyph_id) {
                if let Some(glyph_data) = glyf_table.get(range) {
                    let transform = Transform::combine(builder.transform, comp.transform);
                    let mut b = Builder::new(transform, None, builder.builder);
                    outline_impl(loca_table, glyf_table, glyph_data, depth + 1, &mut b)?;
                }
            }
        }
    } else {
        // An empty glyph.
        return None;
    }

    Some(rect)
}

#[inline]
pub fn parse_simple_outline(
    glyph_data: &[u8],
    number_of_contours: NonZeroU16,
) -> Option<GlyphPointsIter> {
    let mut s = Stream::new(glyph_data);
    let endpoints = s.read_array16::<u16>(number_of_contours.get())?;

    let points_total = endpoints.last()?.checked_add(1)?;

    // Contours with a single point should be ignored.
    // But this is not an error, so we should return an "empty" iterator.
    if points_total == 1 {
        return Some(GlyphPointsIter::default());
    }

    // Skip instructions byte code.
    let instructions_len: u16 = s.read()?;
    s.advance(usize::from(instructions_len));

    let flags_offset = s.offset();
    let (x_coords_len, y_coords_len) = resolve_coords_len(&mut s, points_total)?;
    let x_coords_offset = s.offset();
    let y_coords_offset = x_coords_offset + usize::num_from(x_coords_len);
    let y_coords_end = y_coords_offset + usize::num_from(y_coords_len);

    Some(GlyphPointsIter {
        endpoints: EndpointsIter::new(endpoints)?,
        flags: FlagsIter::new(glyph_data.get(flags_offset..x_coords_offset)?),
        x_coords: CoordsIter::new(glyph_data.get(x_coords_offset..y_coords_offset)?),
        y_coords: CoordsIter::new(glyph_data.get(y_coords_offset..y_coords_end)?),
        points_left: points_total,
    })
}

/// Resolves coordinate arrays length.
///
/// The length depends on *Simple Glyph Flags*, so we have to process them all to find it.
fn resolve_coords_len(
    s: &mut Stream,
    points_total: u16,
) -> Option<(u32, u32)> {
    let mut flags_left = u32::from(points_total);
    let mut repeats;
    let mut x_coords_len = 0;
    let mut y_coords_len = 0;
    while flags_left > 0 {
        let flags = SimpleGlyphFlags(s.read()?);

        // The number of times a glyph point repeats.
        repeats = if flags.repeat_flag() {
            let repeats: u8 = s.read()?;
            u32::from(repeats) + 1
        } else {
            1
        };

        if repeats > flags_left {
            return None;
        }

        // No need to check for `*_coords_len` overflow since u32 is more than enough.

        if flags.x_short() {
            // Coordinate is 1 byte long.
            x_coords_len += repeats;
        } else if !flags.x_is_same_or_positive_short() {
            // Coordinate is 2 bytes long.
            x_coords_len += repeats * 2;
        }

        if flags.y_short() {
            // Coordinate is 1 byte long.
            y_coords_len += repeats;
        } else if !flags.y_is_same_or_positive_short() {
            // Coordinate is 2 bytes long.
            y_coords_len += repeats * 2;
        }

        flags_left -= repeats;
    }

    Some((x_coords_len, y_coords_len))
}