Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! Commands that the GPU will execute (includes draw commands).
//!
//! With Vulkan, before the GPU can do anything you must create a `CommandBuffer`. A command buffer
//! is a list of commands that will executed by the GPU. Once a command buffer is created, you can
//! execute it. A command buffer must always be created even for the most simple tasks.
//!
//! # Primary and secondary command buffers.
//!
//! There are three types of command buffers:
//!
//! - **Primary command buffers**. They can contain any command. They are the only type of command
//!   buffer that can be submitted to a queue.
//! - **Secondary "graphics" command buffers**. They can only contain draw and clear commands.
//!   They can only be called from a primary command buffer when inside a render pass.
//! - **Secondary "compute" command buffers**. They can only contain non-render-pass-related
//!   commands (ie. everything but drawing, clearing, etc.) and cannot enter a render pass. They
//!   can only be called from a primary command buffer outside of a render pass.
//!
//! Using secondary command buffers leads to slightly lower performance on the GPU, but they have
//! two advantages on the CPU side:
//!
//! - Building a command buffer is a single-threaded operation, but by using secondary command
//!   buffers you can build multiple secondary command buffers in multiple threads simultaneously.
//! - Secondary command buffers can be kept alive between frames. When you always repeat the same
//!   operations, it might be a good idea to build a secondary command buffer once at
//!   initialization and then reuse it afterwards.
//!
//! # The `AutoCommandBufferBuilder`
//!
//! The most basic (and recommended) way to create a command buffer is to create a
//! [`AutoCommandBufferBuilder`](struct.AutoCommandBufferBuilder.html). Then use the
//! [`CommandBufferBuilder` trait](trait.CommandBufferBuilder.html) to add commands to it.
//! When you are done adding commands, use
//! [the `CommandBufferBuild` trait](trait.CommandBufferBuild.html) to obtain a
//! `AutoCommandBuffer`.
//!
//! Once built, use [the `CommandBuffer` trait](trait.CommandBuffer.html) to submit the command
//! buffer. Submitting a command buffer returns an object that implements the `GpuFuture` trait and
//! that represents the moment when the execution will end on the GPU.
//!
//! ```
//! use vulkano::command_buffer::AutoCommandBufferBuilder;
//! use vulkano::command_buffer::CommandBuffer;
//!
//! # let device: std::sync::Arc<vulkano::device::Device> = return;
//! # let queue: std::sync::Arc<vulkano::device::Queue> = return;
//! let cb = AutoCommandBufferBuilder::new(device.clone(), queue.family()).unwrap()
//!     // TODO: add an actual command to this example
//!     .build().unwrap();
//!
//! let _future = cb.execute(queue.clone());
//! ```
//!
//! # Internal architecture of vulkano
//!
//! The `commands_raw` and `commands_extra` modules contain structs that correspond to various
//! commands that can be added to command buffer builders. A command can be added to a command
//! buffer builder by using the `AddCommand<C>` trait, where `C` is the command struct.
//!
//! The `AutoCommandBufferBuilder` internally uses a `UnsafeCommandBufferBuilder` wrapped around
//! multiple layers. See the `cb` module for more information.
//!
//! Command pools are automatically handled by default, but vulkano also allows you to use
//! alternative command pool implementations and use them. See the `pool` module for more
//! information.

pub use self::auto::AutoCommandBuffer;
pub use self::auto::AutoCommandBufferBuilder;
pub use self::auto::AutoCommandBufferBuilderContextError;
pub use self::auto::BeginRenderPassError;
pub use self::auto::BlitImageError;
pub use self::auto::BuildError;
pub use self::auto::ClearColorImageError;
pub use self::auto::CopyBufferError;
pub use self::auto::CopyBufferImageError;
pub use self::auto::CopyImageError;
pub use self::auto::DispatchError;
pub use self::auto::DrawError;
pub use self::auto::DrawIndexedError;
pub use self::auto::DrawIndexedIndirectError;
pub use self::auto::DrawIndirectError;
pub use self::auto::ExecuteCommandsError;
pub use self::auto::FillBufferError;
pub use self::auto::UpdateBufferError;
pub use self::state_cacher::StateCacher;
pub use self::state_cacher::StateCacherOutcome;
pub use self::traits::CommandBuffer;
pub use self::traits::CommandBufferExecError;
pub use self::traits::CommandBufferExecFuture;

use pipeline::viewport::Scissor;
use pipeline::viewport::Viewport;
use pipeline::depth_stencil::DynamicStencilValue;

pub mod pool;
pub mod submit;
pub mod synced;
pub mod sys;
pub mod validity;

mod auto;
mod state_cacher;
mod traits;

#[repr(C)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct DrawIndirectCommand {
    pub vertex_count: u32,
    pub instance_count: u32,
    pub first_vertex: u32,
    pub first_instance: u32,
}

#[repr(C)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct DrawIndexedIndirectCommand {
    pub index_count: u32,
    pub instance_count: u32,
    pub first_index: u32,
    pub vertex_offset: u32,
    pub first_instance: u32,
}

#[repr(C)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct DispatchIndirectCommand {
    pub x: u32,
    pub y: u32,
    pub z: u32,
}

/// The dynamic state to use for a draw command.
// TODO: probably not the right location
#[derive(Debug, Clone)]
pub struct DynamicState {
    pub line_width: Option<f32>,
    pub viewports: Option<Vec<Viewport>>,
    pub scissors: Option<Vec<Scissor>>,
    pub compare_mask: Option<DynamicStencilValue>,
    pub write_mask: Option<DynamicStencilValue>,
    pub reference: Option<DynamicStencilValue>,

}

impl DynamicState {
    #[inline]
    pub fn none() -> DynamicState {
        DynamicState {
            line_width: None,
            viewports: None,
            scissors: None,
            compare_mask: None,
            write_mask: None,
            reference: None
        }
    }
}

impl Default for DynamicState {
    #[inline]
    fn default() -> DynamicState {
        DynamicState::none()
    }
}