Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! Targets on which your draw commands are executed.
//!
//! # Render passes and framebuffers
//!
//! There are two concepts in Vulkan:
//!
//! - A *render pass* describes the target which you are going to render to. It is a collection
//!   of descriptions of one or more attachments (ie. image that are rendered to), and of one or
//!   multiples subpasses. The render pass contains the format and number of samples of each
//!   attachment, and the attachments that are attached to each subpass. They are represented
//!   in vulkano with the `RenderPass` object.
//! - A *framebuffer* contains the list of actual images that are attached. It is created from a
//!   render pass and has to match its characteristics. They are represented in vulkano with the
//!   `Framebuffer` object.
//!
//! Render passes are typically created at initialization only (for example during a loading
//! screen) because they can be costly, while framebuffers can be created and destroyed either at
//! initialization or during the frame.
//!
//! Consequently you can create graphics pipelines from a render pass object alone.
//! A `Framebuffer` object is only needed when you actually add draw commands to a command buffer.
//!
//! # Render passes
//!
//! In vulkano a render pass is represented by the `RenderPass` struct. This struct has a template
//! parameter that contains the description of the render pass. The `RenderPassAbstract` trait is
//! implemented on all instances of `RenderPass<_>` and makes it easier to store render passes
//! without having to explicitly write its type.
//!
//! The template parameter of the `RenderPass` struct must implement the `RenderPassDesc` trait.
//! In order to create a render pass, you can create an object that implements this trait, then
//! call the `build_render_pass` method on it.
//!
//! ```
//! use vulkano::framebuffer::EmptySinglePassRenderPassDesc;
//! use vulkano::framebuffer::RenderPassDesc;
//!
//! # let device: std::sync::Arc<vulkano::device::Device> = return;
//! let desc = EmptySinglePassRenderPassDesc;
//! let render_pass = desc.build_render_pass(device.clone()).unwrap();
//! // The type of `render_pass` is `RenderPass<EmptySinglePassRenderPassDesc>`.
//! ```
//!
//! This example creates a render pass with no attachment and one single subpass that doesn't draw
//! on anything. While it's sometimes useful, most of the time it's not what you want.
//!
//! The easiest way to create a "real" render pass is to use the `single_pass_renderpass!` macro.
//!
//! ```
//! # #[macro_use] extern crate vulkano;
//! # fn main() {
//! # let device: std::sync::Arc<vulkano::device::Device> = return;
//! use vulkano::format::Format;
//!
//! let render_pass = single_pass_renderpass!(device.clone(),
//!     attachments: {
//!         // `foo` is a custom name we give to the first and only attachment.
//!         foo: {
//!             load: Clear,
//!             store: Store,
//!             format: Format::R8G8B8A8Unorm,
//!             samples: 1,
//!         }
//!     },
//!     pass: {
//!         color: [foo],       // Repeat the attachment name here.
//!         depth_stencil: {}
//!     }
//! ).unwrap();
//! # }
//! ```
//!
//! See the documentation of the macro for more details. TODO: put link here
//!
//! Once a `RenderPass<_>` struct is created, it implements the same render-pass-related traits as
//! its template parameter.
//!
//! # Framebuffers
//!
//! See [the documentation of the `Framebuffer` struct](struct.Framebuffer.html) for information
//! about how to create a framebuffer.
//!

pub use self::attachments_list::AttachmentsList;
pub use self::compat_atch::IncompatibleRenderPassAttachmentError;
pub use self::compat_atch::ensure_image_view_compatible;
pub use self::desc::AttachmentDescription;
pub use self::desc::PassDependencyDescription;
pub use self::desc::PassDescription;
pub use self::desc::LoadOp;
pub use self::desc::RenderPassDesc;
pub use self::desc::RenderPassDescAttachments;
pub use self::desc::RenderPassDescDependencies;
pub use self::desc::RenderPassDescSubpasses;
pub use self::desc::StoreOp;
pub use self::empty::EmptySinglePassRenderPassDesc;
pub use self::framebuffer::Framebuffer;
pub use self::framebuffer::FramebufferBuilder;
pub use self::framebuffer::FramebufferCreationError;
pub use self::framebuffer::FramebufferSys;
pub use self::sys::RenderPass;
pub use self::sys::RenderPassCreationError;
pub use self::sys::RenderPassSys;
pub use self::traits::FramebufferAbstract;
pub use self::traits::RenderPassAbstract;
pub use self::traits::RenderPassCompatible;
pub use self::traits::RenderPassDescClearValues;
pub use self::traits::RenderPassSubpassInterface;
pub use self::traits::Subpass;

use vk;

#[macro_use]
mod macros;
mod attachments_list;
mod compat_atch;
mod desc;
mod empty;
mod framebuffer;
mod sys;
mod traits;

/// Describes what a subpass in a command buffer will contain.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u32)]
pub enum SubpassContents {
    /// The subpass will only directly contain commands.
    Inline = vk::SUBPASS_CONTENTS_INLINE,
    /// The subpass will only contain secondary command buffers invocations.
    SecondaryCommandBuffers = vk::SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS,
}