Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use device::DeviceOwned;
use format::ClearValue;
use framebuffer::FramebufferSys;
use framebuffer::RenderPassDesc;
use framebuffer::RenderPassSys;
use image::ImageViewAccess;
use pipeline::shader::ShaderInterfaceDef;

use SafeDeref;

/// Trait for objects that contain a Vulkan framebuffer object.
///
/// Any `Framebuffer` object implements this trait. You can therefore turn a `Arc<Framebuffer<_>>`
/// into a `Arc<FramebufferAbstract + Send + Sync>` for easier storage.
pub unsafe trait FramebufferAbstract: RenderPassAbstract {
    /// Returns an opaque struct that represents the framebuffer's internals.
    fn inner(&self) -> FramebufferSys;

    /// Returns the width, height and array layers of the framebuffer.
    fn dimensions(&self) -> [u32; 3];

    /// Returns the attachment of the framebuffer with the given index.
    ///
    /// If the `index` is not between `0` and `num_attachments`, then `None` should be returned.
    fn attached_image_view(&self, index: usize) -> Option<&dyn ImageViewAccess>;

    /// Returns the width of the framebuffer in pixels.
    #[inline]
    fn width(&self) -> u32 {
        self.dimensions()[0]
    }

    /// Returns the height of the framebuffer in pixels.
    #[inline]
    fn height(&self) -> u32 {
        self.dimensions()[1]
    }

    /// Returns the number of layers (or depth) of the framebuffer.
    #[inline]
    fn layers(&self) -> u32 {
        self.dimensions()[2]
    }
}

unsafe impl<T> FramebufferAbstract for T
    where T: SafeDeref,
          T::Target: FramebufferAbstract
{
    #[inline]
    fn inner(&self) -> FramebufferSys {
        FramebufferAbstract::inner(&**self)
    }

    #[inline]
    fn dimensions(&self) -> [u32; 3] {
        (**self).dimensions()
    }

    #[inline]
    fn attached_image_view(&self, index: usize) -> Option<&dyn ImageViewAccess> {
        (**self).attached_image_view(index)
    }
}

/// Trait for objects that contain a Vulkan render pass object.
///
/// Any `RenderPass` object implements this trait. You can therefore turn a `Arc<RenderPass<_>>`
/// into a `Arc<RenderPassAbstract + Send + Sync>` for easier storage.
///
/// The `Arc<RenderPassAbstract + Send + Sync>` accepts a `Vec<ClearValue>` for clear values and a
/// `Vec<Arc<ImageView + Send + Sync>>` for the list of attachments.
///
/// # Example
///
/// ```
/// use std::sync::Arc;
/// use vulkano::framebuffer::EmptySinglePassRenderPassDesc;
/// use vulkano::framebuffer::RenderPass;
/// use vulkano::framebuffer::RenderPassAbstract;
///
/// # let device: Arc<vulkano::device::Device> = return;
/// let render_pass = RenderPass::new(device.clone(), EmptySinglePassRenderPassDesc).unwrap();
///
/// // For easier storage, turn this render pass into a `Arc<RenderPassAbstract + Send + Sync>`.
/// let stored_rp = Arc::new(render_pass) as Arc<RenderPassAbstract + Send + Sync>;
/// ```
pub unsafe trait RenderPassAbstract: DeviceOwned + RenderPassDesc {
    /// Returns an opaque object representing the render pass' internals.
    ///
    /// # Safety
    ///
    /// The trait implementation must return the same value every time.
    fn inner(&self) -> RenderPassSys;
}

unsafe impl<T> RenderPassAbstract for T
    where T: SafeDeref,
          T::Target: RenderPassAbstract
{
    #[inline]
    fn inner(&self) -> RenderPassSys {
        (**self).inner()
    }
}

/// Extension trait for `RenderPassDesc`. Defines which types are allowed as a list of clear values.
///
/// When the user enters a render pass, they need to pass a list of clear values to apply to
/// the attachments of the framebuffer. To do so, the render pass object or the framebuffer
/// (depending on the function you use) must implement `RenderPassDescClearValues<C>` where `C` is
/// the parameter that the user passed. The trait method is then responsible for checking the
/// correctness of these values and turning them into a list that can be processed by vulkano.
pub unsafe trait RenderPassDescClearValues<C> {
    /// Decodes a `C` into a list of clear values where each element corresponds
    /// to an attachment. The size of the returned iterator must be the same as the number of
    /// attachments.
    ///
    /// The format of the clear value **must** match the format of the attachment. Attachments
    /// that are not loaded with `LoadOp::Clear` must have an entry equal to `ClearValue::None`.
    ///
    /// # Safety
    ///
    /// This trait is unsafe because vulkano doesn't check whether the clear value is in a format
    /// that matches the attachment.
    ///
    // TODO: meh for boxing
    fn convert_clear_values(&self, C) -> Box<dyn Iterator<Item = ClearValue>>;
}

unsafe impl<T, C> RenderPassDescClearValues<C> for T
    where T: SafeDeref,
          T::Target: RenderPassDescClearValues<C>
{
    #[inline]
    fn convert_clear_values(&self, vals: C) -> Box<dyn Iterator<Item = ClearValue>> {
        (**self).convert_clear_values(vals)
    }
}

/// Extension trait for `RenderPassDesc` that checks whether a subpass of this render pass accepts
/// the output of a fragment shader.
///
/// The trait is automatically implemented for all type that implement `RenderPassDesc` and
/// `RenderPassDesc`.
///
/// > **Note**: This trait exists so that you can specialize it once specialization lands in Rust.
// TODO: once specialization lands, this trait can be specialized for pairs that are known to
//       always be compatible
pub unsafe trait RenderPassSubpassInterface<Other: ?Sized>: RenderPassDesc
    where Other: ShaderInterfaceDef
{
    /// Returns `true` if this subpass is compatible with the fragment output definition.
    /// Also returns `false` if the subpass is out of range.
    // TODO: return proper error
    fn is_compatible_with(&self, subpass: u32, other: &Other) -> bool;
}

unsafe impl<A, B: ?Sized> RenderPassSubpassInterface<B> for A
    where A: RenderPassDesc,
          B: ShaderInterfaceDef
{
    fn is_compatible_with(&self, subpass: u32, other: &B) -> bool {
        let pass_descr = match RenderPassDesc::subpass_descs(self)
            .skip(subpass as usize)
            .next() {
            Some(s) => s,
            None => return false,
        };

        for element in other.elements() {
            for location in element.location.clone() {
                let attachment_id = match pass_descr.color_attachments.get(location as usize) {
                    Some(a) => a.0,
                    None => return false,
                };

                let attachment_desc = (&self)
                    .attachment_descs()
                    .skip(attachment_id)
                    .next()
                    .unwrap();

                // FIXME: compare formats depending on the number of components and data type
                /*if attachment_desc.format != element.format {
                    return false;
                }*/
            }
        }

        true
    }
}

/// Trait implemented on render pass objects to check whether they are compatible
/// with another render pass.
///
/// The trait is automatically implemented for all type that implement `RenderPassDesc`.
///
/// > **Note**: This trait exists so that you can specialize it once specialization lands in Rust.
// TODO: once specialization lands, this trait can be specialized for pairs that are known to
//       always be compatible
// TODO: maybe this can be unimplemented on some pairs, to provide compile-time checks?
pub unsafe trait RenderPassCompatible<Other: ?Sized>: RenderPassDesc
    where Other: RenderPassDesc
{
    /// Returns `true` if this layout is compatible with the other layout, as defined in the
    /// `Render Pass Compatibility` section of the Vulkan specs.
    // TODO: return proper error
    fn is_compatible_with(&self, other: &Other) -> bool;
}

unsafe impl<A: ?Sized, B: ?Sized> RenderPassCompatible<B> for A
    where A: RenderPassDesc,
          B: RenderPassDesc
{
    fn is_compatible_with(&self, other: &B) -> bool {
        if self.num_attachments() != other.num_attachments() {
            return false;
        }

        for atch_num in 0 .. self.num_attachments() {
            let my_atch = self.attachment_desc(atch_num).unwrap();
            let other_atch = other.attachment_desc(atch_num).unwrap();

            if !my_atch.is_compatible_with(&other_atch) {
                return false;
            }
        }

        return true;

        // FIXME: finish
    }
}

/// Represents a subpass within a `RenderPassAbstract` object.
///
/// This struct doesn't correspond to anything in Vulkan. It is simply an equivalent to a
/// tuple of a render pass and subpass index. Contrary to a tuple, however, the existence of the
/// subpass is checked when the object is created. When you have a `Subpass` you are guaranteed
/// that the given subpass does exist.
#[derive(Debug, Copy, Clone)]
pub struct Subpass<L> {
    render_pass: L,
    subpass_id: u32,
}

impl<L> Subpass<L>
    where L: RenderPassDesc
{
    /// Returns a handle that represents a subpass of a render pass.
    #[inline]
    pub fn from(render_pass: L, id: u32) -> Option<Subpass<L>> {
        if (id as usize) < render_pass.num_subpasses() {
            Some(Subpass {
                     render_pass: render_pass,
                     subpass_id: id,
                 })

        } else {
            None
        }
    }

    /// Returns the number of color attachments in this subpass.
    #[inline]
    pub fn num_color_attachments(&self) -> u32 {
        self.render_pass
            .num_color_attachments(self.subpass_id)
            .unwrap()
    }

    /// Returns true if the subpass has a depth attachment or a depth-stencil attachment.
    #[inline]
    pub fn has_depth(&self) -> bool {
        self.render_pass.has_depth(self.subpass_id).unwrap()
    }

    /// Returns true if the subpass has a depth attachment or a depth-stencil attachment whose
    /// layout is not `DepthStencilReadOnlyOptimal`.
    #[inline]
    pub fn has_writable_depth(&self) -> bool {
        self.render_pass
            .has_writable_depth(self.subpass_id)
            .unwrap()
    }

    /// Returns true if the subpass has a stencil attachment or a depth-stencil attachment.
    #[inline]
    pub fn has_stencil(&self) -> bool {
        self.render_pass.has_stencil(self.subpass_id).unwrap()
    }

    /// Returns true if the subpass has a stencil attachment or a depth-stencil attachment whose
    /// layout is not `DepthStencilReadOnlyOptimal`.
    #[inline]
    pub fn has_writable_stencil(&self) -> bool {
        self.render_pass
            .has_writable_stencil(self.subpass_id)
            .unwrap()
    }

    /// Returns true if the subpass has any color or depth/stencil attachment.
    #[inline]
    pub fn has_color_or_depth_stencil_attachment(&self) -> bool {
        self.num_color_attachments() >= 1 ||
            self.render_pass
                .has_depth_stencil_attachment(self.subpass_id)
                .unwrap() != (false, false)
    }

    /// Returns the number of samples in the color and/or depth/stencil attachments. Returns `None`
    /// if there is no such attachment in this subpass.
    #[inline]
    pub fn num_samples(&self) -> Option<u32> {
        self.render_pass.num_samples(self.subpass_id)
    }
}

impl<L> Subpass<L> {
    /// Returns the render pass of this subpass.
    #[inline]
    pub fn render_pass(&self) -> &L {
        &self.render_pass
    }

    /// Returns the index of this subpass within the renderpass.
    #[inline]
    pub fn index(&self) -> u32 {
        self.subpass_id
    }
}

impl<L> Into<(L, u32)> for Subpass<L> {
    #[inline]
    fn into(self) -> (L, u32) {
        (self.render_pass, self.subpass_id)
    }
}