Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use buffer::BufferAccess;
use format::ClearValue;
use format::Format;
use format::PossibleDepthFormatDesc;
use format::PossibleDepthStencilFormatDesc;
use format::PossibleFloatFormatDesc;
use format::PossibleSintFormatDesc;
use format::PossibleStencilFormatDesc;
use format::PossibleUintFormatDesc;
use format::PossibleCompressedFormatDesc;
use image::Dimensions;
use image::ImageDimensions;
use image::ImageLayout;
use image::sys::UnsafeImage;
use image::sys::UnsafeImageView;
use sampler::Sampler;
use sync::AccessError;

use SafeDeref;

/// Trait for types that represent the way a GPU can access an image.
pub unsafe trait ImageAccess {
    /// Returns the inner unsafe image object used by this image.
    fn inner(&self) -> ImageInner;

    /// Returns the format of this image.
    #[inline]
    fn format(&self) -> Format {
        self.inner().image.format()
    }

    /// Returns true if the image is a color image.
    #[inline]
    fn has_color(&self) -> bool {
        let format = self.format();
        format.is_float() || format.is_uint() || format.is_sint() || format.is_compressed()
    }

    /// Returns true if the image has a depth component. In other words, if it is a depth or a
    /// depth-stencil format.
    #[inline]
    fn has_depth(&self) -> bool {
        let format = self.format();
        format.is_depth() || format.is_depth_stencil()
    }

    /// Returns true if the image has a stencil component. In other words, if it is a stencil or a
    /// depth-stencil format.
    #[inline]
    fn has_stencil(&self) -> bool {
        let format = self.format();
        format.is_stencil() || format.is_depth_stencil()
    }

    /// Returns the number of mipmap levels of this image.
    #[inline]
    fn mipmap_levels(&self) -> u32 {
        // TODO: not necessarily correct because of the new inner() design?
        self.inner().image.mipmap_levels()
    }

    /// Returns the number of samples of this image.
    #[inline]
    fn samples(&self) -> u32 {
        self.inner().image.samples()
    }

    /// Returns the dimensions of the image.
    #[inline]
    fn dimensions(&self) -> ImageDimensions {
        // TODO: not necessarily correct because of the new inner() design?
        self.inner().image.dimensions()
    }

    /// Returns true if the image can be used as a source for blits.
    #[inline]
    fn supports_blit_source(&self) -> bool {
        self.inner().image.supports_blit_source()
    }

    /// Returns true if the image can be used as a destination for blits.
    #[inline]
    fn supports_blit_destination(&self) -> bool {
        self.inner().image.supports_blit_destination()
    }

    /// When images are created their memory layout is initially `Undefined` or `Preinitialized`.
    /// This method allows the image memory barrier creation process to signal when an image
    /// has been transitioned out of its initial `Undefined` or `Preinitialized` state. This
    /// allows vulkano to avoid creating unnecessary image memory barriers between future
    /// uses of the image.
    ///
    /// ## Unsafe
    ///
    /// If a user calls this method outside of the intended context and signals that the layout
    /// is no longer `Undefined` or `Preinitialized` when it is still in an `Undefined` or
    /// `Preinitialized` state, this may result in the vulkan implementation attempting to use
    /// an image in an invalid layout. The same problem must be considered by the implementer
    /// of the method.
    unsafe fn layout_initialized(&self) {}

    fn is_layout_initialized(&self) -> bool {false}

    unsafe fn preinitialized_layout(&self) -> bool {
        self.inner().image.preinitialized_layout()
    }

    /// Returns the layout that the image has when it is first used in a primary command buffer.
    ///
    /// The first time you use an image in an `AutoCommandBufferBuilder`, vulkano will suppose that
    /// the image is in the layout returned by this function. Later when the command buffer is
    /// submitted vulkano will check whether the image is actually in this layout, and if it is not
    /// the case then an error will be returned.
    /// TODO: ^ that check is not yet implemented
    fn initial_layout_requirement(&self) -> ImageLayout;

    /// Returns the layout that the image must be returned to before the end of the command buffer.
    ///
    /// When an image is used in an `AutoCommandBufferBuilder` vulkano will automatically
    /// transition this image to the layout returned by this function at the end of the command
    /// buffer, if necessary.
    ///
    /// Except for special cases, this value should likely be the same as the one returned by
    /// `initial_layout_requirement` so that the user can submit multiple command buffers that use
    /// this image one after the other.
    fn final_layout_requirement(&self) -> ImageLayout;

    /// Wraps around this `ImageAccess` and returns an identical `ImageAccess` but whose initial
    /// layout requirement is either `Undefined` or `Preinitialized`.
    #[inline]
    unsafe fn forced_undefined_initial_layout(self, preinitialized: bool)
                                              -> ImageAccessFromUndefinedLayout<Self>
        where Self: Sized
    {
        ImageAccessFromUndefinedLayout {
            image: self,
            preinitialized: preinitialized,
        }
    }

    /// Returns true if an access to `self` potentially overlaps the same memory as an
    /// access to `other`.
    ///
    /// If this function returns `false`, this means that we are allowed to access the content
    /// of `self` at the same time as the content of `other` without causing a data race.
    ///
    /// Note that the function must be transitive. In other words if `conflicts(a, b)` is true and
    /// `conflicts(b, c)` is true, then `conflicts(a, c)` must be true as well.
    fn conflicts_buffer(&self, other: &dyn BufferAccess) -> bool;

    /// Returns true if an access to `self` potentially overlaps the same memory as an
    /// access to `other`.
    ///
    /// If this function returns `false`, this means that we are allowed to access the content
    /// of `self` at the same time as the content of `other` without causing a data race.
    ///
    /// Note that the function must be transitive. In other words if `conflicts(a, b)` is true and
    /// `conflicts(b, c)` is true, then `conflicts(a, c)` must be true as well.
    fn conflicts_image(&self, other: &dyn ImageAccess) -> bool;

    /// Returns a key that uniquely identifies the memory content of the image.
    /// Two ranges that potentially overlap in memory must return the same key.
    ///
    /// The key is shared amongst all buffers and images, which means that you can make several
    /// different image objects share the same memory, or make some image objects share memory
    /// with buffers, as long as they return the same key.
    ///
    /// Since it is possible to accidentally return the same key for memory ranges that don't
    /// overlap, the `conflicts_image` or `conflicts_buffer` function should always be called to
    /// verify whether they actually overlap.
    fn conflict_key(&self) -> u64;

    /// Locks the resource for usage on the GPU. Returns an error if the lock can't be acquired.
    ///
    /// After this function returns `Ok`, you are authorized to use the image on the GPU. If the
    /// GPU operation requires an exclusive access to the image (which includes image layout
    /// transitions) then `exclusive_access` should be true.
    ///
    /// The `expected_layout` is the layout we expect the image to be in when we lock it. If the
    /// actual layout doesn't match this expected layout, then an error should be returned. If
    /// `Undefined` is passed, that means that the caller doesn't care about the actual layout,
    /// and that a layout mismatch shouldn't return an error.
    ///
    /// This function exists to prevent the user from causing a data race by reading and writing
    /// to the same resource at the same time.
    ///
    /// If you call this function, you should call `unlock()` once the resource is no longer in use
    /// by the GPU. The implementation is not expected to automatically perform any unlocking and
    /// can rely on the fact that `unlock()` is going to be called.
    fn try_gpu_lock(&self, exclusive_access: bool, expected_layout: ImageLayout)
                    -> Result<(), AccessError>;

    /// Locks the resource for usage on the GPU. Supposes that the resource is already locked, and
    /// simply increases the lock by one.
    ///
    /// Must only be called after `try_gpu_lock()` succeeded.
    ///
    /// If you call this function, you should call `unlock()` once the resource is no longer in use
    /// by the GPU. The implementation is not expected to automatically perform any unlocking and
    /// can rely on the fact that `unlock()` is going to be called.
    unsafe fn increase_gpu_lock(&self);

    /// Unlocks the resource previously acquired with `try_gpu_lock` or `increase_gpu_lock`.
    ///
    /// If the GPU operation that we unlock from transitioned the image to another layout, then
    /// it should be passed as parameter.
    ///
    /// A layout transition requires exclusive access to the image, which means two things:
    ///
    /// - The implementation can panic if it finds out that the layout is not the same as it
    ///   currently is and that it is not locked in exclusive mode.
    /// - There shouldn't be any possible race between `unlock` and `try_gpu_lock`, since
    ///   `try_gpu_lock` should fail if the image is already locked in exclusive mode.
    ///
    /// # Safety
    ///
    /// - Must only be called once per previous lock.
    /// - The transitioned layout must be supported by the image (eg. the layout shouldn't be
    ///   `ColorAttachmentOptimal` if the image wasn't created with the `color_attachment` usage).
    /// - The transitioned layout must not be `Undefined`.
    ///
    unsafe fn unlock(&self, transitioned_layout: Option<ImageLayout>);
}

/// Inner information about an image.
#[derive(Copy, Clone, Debug)]
pub struct ImageInner<'a> {
    /// The underlying image object.
    pub image: &'a UnsafeImage,

    /// The first layer of `image` to consider.
    pub first_layer: usize,

    /// The number of layers of `image` to consider.
    pub num_layers: usize,

    /// The first mipmap level of `image` to consider.
    pub first_mipmap_level: usize,

    /// The number of mipmap levels of `image` to consider.
    pub num_mipmap_levels: usize,
}

unsafe impl<T> ImageAccess for T
    where T: SafeDeref,
          T::Target: ImageAccess
{
    #[inline]
    fn inner(&self) -> ImageInner {
        (**self).inner()
    }

    #[inline]
    fn initial_layout_requirement(&self) -> ImageLayout {
        (**self).initial_layout_requirement()
    }

    #[inline]
    fn final_layout_requirement(&self) -> ImageLayout {
        (**self).final_layout_requirement()
    }

    #[inline]
    fn conflicts_buffer(&self, other: &dyn BufferAccess) -> bool {
        (**self).conflicts_buffer(other)
    }

    #[inline]
    fn conflicts_image(&self, other: &dyn ImageAccess) -> bool {
        (**self).conflicts_image(other)
    }

    #[inline]
    fn conflict_key(&self) -> u64 {
        (**self).conflict_key()
    }

    #[inline]
    fn try_gpu_lock(&self, exclusive_access: bool, expected_layout: ImageLayout)
                    -> Result<(), AccessError> {
        (**self).try_gpu_lock(exclusive_access, expected_layout)
    }

    #[inline]
    unsafe fn increase_gpu_lock(&self) {
        (**self).increase_gpu_lock()
    }

    #[inline]
    unsafe fn unlock(&self, transitioned_layout: Option<ImageLayout>) {
        (**self).unlock(transitioned_layout)
    }

    #[inline]
    unsafe fn layout_initialized(&self) {
        (**self).layout_initialized();
    }

    #[inline]
    fn is_layout_initialized(&self) -> bool {
        (**self).is_layout_initialized()
    }
}

/// Wraps around an object that implements `ImageAccess` and modifies the initial layout
/// requirement to be either `Undefined` or `Preinitialized`.
#[derive(Debug, Copy, Clone)]
pub struct ImageAccessFromUndefinedLayout<I> {
    image: I,
    preinitialized: bool,
}

unsafe impl<I> ImageAccess for ImageAccessFromUndefinedLayout<I>
    where I: ImageAccess
{
    #[inline]
    fn inner(&self) -> ImageInner {
        self.image.inner()
    }

    #[inline]
    fn initial_layout_requirement(&self) -> ImageLayout {
        if self.preinitialized {
            ImageLayout::Preinitialized
        } else {
            ImageLayout::Undefined
        }
    }

    #[inline]
    fn final_layout_requirement(&self) -> ImageLayout {
        self.image.final_layout_requirement()
    }

    #[inline]
    fn conflicts_buffer(&self, other: &dyn BufferAccess) -> bool {
        self.image.conflicts_buffer(other)
    }

    #[inline]
    fn conflicts_image(&self, other: &dyn ImageAccess) -> bool {
        self.image.conflicts_image(other)
    }

    #[inline]
    fn conflict_key(&self) -> u64 {
        self.image.conflict_key()
    }

    #[inline]
    fn try_gpu_lock(&self, exclusive_access: bool, expected_layout: ImageLayout)
                    -> Result<(), AccessError> {
        self.image.try_gpu_lock(exclusive_access, expected_layout)
    }

    #[inline]
    unsafe fn increase_gpu_lock(&self) {
        self.image.increase_gpu_lock()
    }

    #[inline]
    unsafe fn unlock(&self, new_layout: Option<ImageLayout>) {
        self.image.unlock(new_layout)
    }
}

/// Extension trait for images. Checks whether the value `T` can be used as a clear value for the
/// given image.
// TODO: isn't that for image views instead?
pub unsafe trait ImageClearValue<T>: ImageAccess {
    fn decode(&self, T) -> Option<ClearValue>;
}

pub unsafe trait ImageContent<P>: ImageAccess {
    /// Checks whether pixels of type `P` match the format of the image.
    fn matches_format(&self) -> bool;
}

/// Trait for types that represent the GPU can access an image view.
pub unsafe trait ImageViewAccess {
    fn parent(&self) -> &dyn ImageAccess;

    /// Returns the dimensions of the image view.
    fn dimensions(&self) -> Dimensions;

    /// Returns the inner unsafe image view object used by this image view.
    fn inner(&self) -> &UnsafeImageView;

    /// Returns the format of this view. This can be different from the parent's format.
    #[inline]
    fn format(&self) -> Format {
        // TODO: remove this default impl
        self.inner().format()
    }

    #[inline]
    fn samples(&self) -> u32 {
        self.parent().samples()
    }

    /// Returns the image layout to use in a descriptor with the given subresource.
    fn descriptor_set_storage_image_layout(&self) -> ImageLayout;
    /// Returns the image layout to use in a descriptor with the given subresource.
    fn descriptor_set_combined_image_sampler_layout(&self) -> ImageLayout;
    /// Returns the image layout to use in a descriptor with the given subresource.
    fn descriptor_set_sampled_image_layout(&self) -> ImageLayout;
    /// Returns the image layout to use in a descriptor with the given subresource.
    fn descriptor_set_input_attachment_layout(&self) -> ImageLayout;

    /// Returns true if the view doesn't use components swizzling.
    ///
    /// Must be true when the view is used as a framebuffer attachment or TODO: I don't remember
    /// the other thing.
    fn identity_swizzle(&self) -> bool;

    /// Returns true if the given sampler can be used with this image view.
    ///
    /// This method should check whether the sampler's configuration can be used with the format
    /// of the view.
    // TODO: return a Result and propagate it when binding to a descriptor set
    fn can_be_sampled(&self, _sampler: &Sampler) -> bool {
        true /* FIXME */
    }

    //fn usable_as_render_pass_attachment(&self, ???) -> Result<(), ???>;
}

unsafe impl<T> ImageViewAccess for T
    where T: SafeDeref,
          T::Target: ImageViewAccess
{
    #[inline]
    fn parent(&self) -> &dyn ImageAccess {
        (**self).parent()
    }

    #[inline]
    fn inner(&self) -> &UnsafeImageView {
        (**self).inner()
    }

    #[inline]
    fn dimensions(&self) -> Dimensions {
        (**self).dimensions()
    }

    #[inline]
    fn descriptor_set_storage_image_layout(&self) -> ImageLayout {
        (**self).descriptor_set_storage_image_layout()
    }
    #[inline]
    fn descriptor_set_combined_image_sampler_layout(&self) -> ImageLayout {
        (**self).descriptor_set_combined_image_sampler_layout()
    }
    #[inline]
    fn descriptor_set_sampled_image_layout(&self) -> ImageLayout {
        (**self).descriptor_set_sampled_image_layout()
    }
    #[inline]
    fn descriptor_set_input_attachment_layout(&self) -> ImageLayout {
        (**self).descriptor_set_input_attachment_layout()
    }

    #[inline]
    fn identity_swizzle(&self) -> bool {
        (**self).identity_swizzle()
    }

    #[inline]
    fn can_be_sampled(&self, sampler: &Sampler) -> bool {
        (**self).can_be_sampled(sampler)
    }
}

pub unsafe trait AttachmentImageView: ImageViewAccess {
    fn accept(&self, initial_layout: ImageLayout, final_layout: ImageLayout) -> bool;
}