Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

//! API entry point.
//!
//! The first thing to do before you start using Vulkan is to create an `Instance` object.
//!
//! For example:
//!
//! ```no_run
//! use vulkano::instance::Instance;
//! use vulkano::instance::InstanceExtensions;
//!
//! let instance = match Instance::new(None, &InstanceExtensions::none(), None) {
//!     Ok(i) => i,
//!     Err(err) => panic!("Couldn't build instance: {:?}", err)
//! };
//! ```
//!
//! Creating an instance initializes everything and allows you to enumerate physical devices,
//! ie. all the Vulkan implementations that are available on the system.
//!
//! ```no_run
//! # use vulkano::instance::Instance;
//! # use vulkano::instance::InstanceExtensions;
//! use vulkano::instance::PhysicalDevice;
//!
//! # let instance = Instance::new(None, &InstanceExtensions::none(), None).unwrap();
//! for physical_device in PhysicalDevice::enumerate(&instance) {
//!     println!("Available device: {}", physical_device.name());
//! }
//! ```
//!
//! # Extensions
//!
//! Notice the second parameter of `Instance::new()`. It is an `InstanceExtensions` struct that
//! contains a list of extensions that must be enabled on the newly-created instance. Trying to
//! enable an extension that is not supported by the system will result in an error.
//!
//! Contrary to OpenGL, it is not possible to use the features of an extension if it was not
//! explicitly enabled.
//!
//! Extensions are especially important to take into account if you want to render images on the
//! screen, as the only way to do so is to use the `VK_KHR_surface` extension. More information
//! about this in the `swapchain` module.
//!
//! For example, here is how we create an instance with the `VK_KHR_surface` and
//! `VK_KHR_android_surface` extensions enabled, which will allow us to render images to an
//! Android screen. You can compile and run this code on any system, but it is highly unlikely to
//! succeed on anything else than an Android-running device.
//!
//! ```no_run
//! use vulkano::instance::Instance;
//! use vulkano::instance::InstanceExtensions;
//!
//! let extensions = InstanceExtensions {
//!     khr_surface: true,
//!     khr_android_surface: true,
//!     .. InstanceExtensions::none()
//! };
//!
//! let instance = match Instance::new(None, &extensions, None) {
//!     Ok(i) => i,
//!     Err(err) => panic!("Couldn't build instance: {:?}", err)
//! };
//! ```
//!
//! # Application info
//!
//! When you create an instance, you have the possibility to pass an `ApplicationInfo` struct as
//! the first parameter. This struct contains various information about your application, most
//! notably its name and engine.
//!
//! Passing such a structure allows for example the driver to let the user configure the driver's
//! behavior for your application alone through a control panel.
//!
//! ```no_run
//! # #[macro_use] extern crate vulkano;
//! # fn main() {
//! use vulkano::instance::{Instance, InstanceExtensions};
//!
//! // Builds an `ApplicationInfo` by looking at the content of the `Cargo.toml` file at
//! // compile-time.
//! let app_infos = app_info_from_cargo_toml!();
//!
//! let _instance = Instance::new(Some(&app_infos), &InstanceExtensions::none(), None).unwrap();
//! # }
//! ```
//!
//! # Enumerating physical devices and creating a device
//!
//! After you have created an instance, the next step is usually to enumerate the physical devices
//! that are available on the system with `PhysicalDevice::enumerate()` (see above).
//!
//! When choosing which physical device to use, keep in mind that physical devices may or may not
//! be able to draw to a certain surface (ie. to a window or a monitor), or may even not be able
//! to draw at all. See the `swapchain` module for more information about surfaces.
//!
//! Once you have chosen a physical device, you can create a `Device` object from it. See the
//! `device` module for more info.
//!

pub use self::extensions::InstanceExtensions;
pub use self::extensions::RawInstanceExtensions;
pub use self::instance::ApplicationInfo;
pub use self::instance::Instance;
pub use self::instance::InstanceCreationError;
pub use self::instance::MemoryHeap;
pub use self::instance::MemoryHeapsIter;
pub use self::instance::MemoryType;
pub use self::instance::MemoryTypesIter;
pub use self::instance::PhysicalDevice;
pub use self::instance::PhysicalDeviceType;
pub use self::instance::PhysicalDevicesIter;
pub use self::instance::QueueFamiliesIter;
pub use self::instance::QueueFamily;
pub use self::layers::LayerProperties;
pub use self::layers::LayersIterator;
pub use self::layers::LayersListError;
pub use self::layers::layers_list;
pub use self::limits::Limits;
pub use self::loader::LoadingError;
pub use version::Version;

pub mod debug;
pub mod loader;

mod extensions;
mod instance;
mod layers;
mod limits;