Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use std::error;
use std::fmt;
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ops::Range;
use std::os::raw::c_void;
use std::ptr;
use std::sync::Arc;

use Error;
use OomError;
use VulkanObject;
use check_errors;
use device::Device;
use device::DeviceOwned;
use instance::MemoryType;
use memory::Content;
use memory::DedicatedAlloc;
use vk;

/// Represents memory that has been allocated.
///
/// The destructor of `DeviceMemory` automatically frees the memory.
///
/// # Example
///
/// ```
/// use vulkano::memory::DeviceMemory;
///
/// # let device: std::sync::Arc<vulkano::device::Device> = return;
/// let mem_ty = device.physical_device().memory_types().next().unwrap();
///
/// // Allocates 1KB of memory.
/// let memory = DeviceMemory::alloc(device.clone(), mem_ty, 1024).unwrap();
/// ```
pub struct DeviceMemory {
    memory: vk::DeviceMemory,
    device: Arc<Device>,
    size: usize,
    memory_type_index: u32,
}

impl DeviceMemory {
    /// Allocates a chunk of memory from the device.
    ///
    /// Some platforms may have a limit on the maximum size of a single allocation. For example,
    /// certain systems may fail to create allocations with a size greater than or equal to 4GB.
    ///
    /// # Panic
    ///
    /// - Panics if `size` is 0.
    /// - Panics if `memory_type` doesn't belong to the same physical device as `device`.
    ///
    #[inline]
    pub fn alloc(device: Arc<Device>, memory_type: MemoryType, size: usize)
                 -> Result<DeviceMemory, DeviceMemoryAllocError> {
        DeviceMemory::dedicated_alloc(device, memory_type, size, DedicatedAlloc::None)
    }

    /// Same as `alloc`, but allows specifying a resource that will be bound to the memory.
    ///
    /// If a buffer or an image is specified in `resource`, then the returned memory must not be
    /// bound to a different buffer or image.
    ///
    /// If the `VK_KHR_dedicated_allocation` extension is enabled on the device, then it will be
    /// used by this method. Otherwise the `resource` parameter will be ignored.
    #[inline]
    pub fn dedicated_alloc(device: Arc<Device>, memory_type: MemoryType, size: usize,
                           resource: DedicatedAlloc)
                           -> Result<DeviceMemory, DeviceMemoryAllocError> {
        assert!(size >= 1);
        assert_eq!(device.physical_device().internal_object(),
                   memory_type.physical_device().internal_object());

        // Note: This check is disabled because MoltenVK doesn't report correct heap sizes yet.
        // More generally, whether or not this check is useful is questionable.
        // TODO: ^
        /*if size > memory_type.heap().size() {
            return Err(OomError::OutOfDeviceMemory);
        }*/

        let memory = unsafe {
            let physical_device = device.physical_device();
            let mut allocation_count = device.allocation_count().lock().expect("Poisoned mutex");
            if *allocation_count >= physical_device.limits().max_memory_allocation_count() {
                return Err(DeviceMemoryAllocError::TooManyObjects);
            }
            let vk = device.pointers();

            // Decide whether we are going to pass a `vkMemoryDedicatedAllocateInfoKHR`.
            let dedicated_alloc_info = if device.loaded_extensions().khr_dedicated_allocation {
                match resource {
                    DedicatedAlloc::Buffer(buffer) => {
                        Some(vk::MemoryDedicatedAllocateInfoKHR {
                                 sType: vk::STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR,
                                 pNext: ptr::null(),
                                 image: 0,
                                 buffer: buffer.internal_object(),
                             })
                    },
                    DedicatedAlloc::Image(image) => {
                        Some(vk::MemoryDedicatedAllocateInfoKHR {
                                 sType: vk::STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR,
                                 pNext: ptr::null(),
                                 image: image.internal_object(),
                                 buffer: 0,
                             })
                    },
                    DedicatedAlloc::None => {
                        None
                    },
                }
            } else {
                None
            };

            let infos = vk::MemoryAllocateInfo {
                sType: vk::STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
                pNext: dedicated_alloc_info
                    .as_ref()
                    .map(|i| i as *const vk::MemoryDedicatedAllocateInfoKHR)
                    .unwrap_or(ptr::null()) as *const _,
                allocationSize: size as u64,
                memoryTypeIndex: memory_type.id(),
            };

            let mut output = MaybeUninit::uninit();
            check_errors(vk.AllocateMemory(device.internal_object(),
                                           &infos,
                                           ptr::null(),
                                           output.as_mut_ptr()))?;
            *allocation_count += 1;
            output.assume_init()
        };

        Ok(DeviceMemory {
               memory: memory,
               device: device,
               size: size,
               memory_type_index: memory_type.id(),
           })
    }

    /// Allocates a chunk of memory and maps it.
    ///
    /// # Panic
    ///
    /// - Panics if `memory_type` doesn't belong to the same physical device as `device`.
    /// - Panics if the memory type is not host-visible.
    ///
    #[inline]
    pub fn alloc_and_map(device: Arc<Device>, memory_type: MemoryType, size: usize)
                         -> Result<MappedDeviceMemory, DeviceMemoryAllocError> {
        DeviceMemory::dedicated_alloc_and_map(device, memory_type, size, DedicatedAlloc::None)
    }

    /// Equivalent of `dedicated_alloc` for `alloc_and_map`.
    pub fn dedicated_alloc_and_map(device: Arc<Device>, memory_type: MemoryType, size: usize,
                                   resource: DedicatedAlloc)
                                   -> Result<MappedDeviceMemory, DeviceMemoryAllocError> {
        let vk = device.pointers();

        assert!(memory_type.is_host_visible());
        let mem = DeviceMemory::dedicated_alloc(device.clone(), memory_type, size, resource)?;

        let coherent = memory_type.is_host_coherent();

        let ptr = unsafe {
            let mut output = MaybeUninit::uninit();
            check_errors(vk.MapMemory(device.internal_object(),
                                      mem.memory,
                                      0,
                                      mem.size as vk::DeviceSize,
                                      0, /* reserved flags */
                                      output.as_mut_ptr()))?;
            output.assume_init()
        };

        Ok(MappedDeviceMemory {
               memory: mem,
               pointer: ptr,
               coherent: coherent,
           })
    }

    /// Returns the memory type this chunk was allocated on.
    #[inline]
    pub fn memory_type(&self) -> MemoryType {
        self.device
            .physical_device()
            .memory_type_by_id(self.memory_type_index)
            .unwrap()
    }

    /// Returns the size in bytes of that memory chunk.
    #[inline]
    pub fn size(&self) -> usize {
        self.size
    }
}

unsafe impl DeviceOwned for DeviceMemory {
    #[inline]
    fn device(&self) -> &Arc<Device> {
        &self.device
    }
}

impl fmt::Debug for DeviceMemory {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("DeviceMemory")
            .field("device", &*self.device)
            .field("memory_type", &self.memory_type())
            .field("size", &self.size)
            .finish()
    }
}

unsafe impl VulkanObject for DeviceMemory {
    type Object = vk::DeviceMemory;

    const TYPE: vk::ObjectType = vk::OBJECT_TYPE_DEVICE_MEMORY;

    #[inline]
    fn internal_object(&self) -> vk::DeviceMemory {
        self.memory
    }
}

impl Drop for DeviceMemory {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            let vk = self.device.pointers();
            vk.FreeMemory(self.device.internal_object(), self.memory, ptr::null());
            let mut allocation_count = self.device
                .allocation_count()
                .lock()
                .expect("Poisoned mutex");
            *allocation_count -= 1;
        }
    }
}

/// Represents memory that has been allocated and mapped in CPU accessible space.
///
/// Can be obtained with `DeviceMemory::alloc_and_map`. The function will panic if the memory type
/// is not host-accessible.
///
/// In order to access the content of the allocated memory, you can use the `read_write` method.
/// This method returns a guard object that derefs to the content.
///
/// # Example
///
/// ```
/// use vulkano::memory::DeviceMemory;
///
/// # let device: std::sync::Arc<vulkano::device::Device> = return;
/// // The memory type must be mappable.
/// let mem_ty = device.physical_device().memory_types()
///                     .filter(|t| t.is_host_visible())
///                     .next().unwrap();    // Vk specs guarantee that this can't fail
///
/// // Allocates 1KB of memory.
/// let memory = DeviceMemory::alloc_and_map(device.clone(), mem_ty, 1024).unwrap();
///
/// // Get access to the content. Note that this is very unsafe for two reasons: 1) the content is
/// // uninitialized, and 2) the access is unsynchronized.
/// unsafe {
///     let mut content = memory.read_write::<[u8]>(0 .. 1024);
///     content[12] = 54;       // `content` derefs to a `&[u8]` or a `&mut [u8]`
/// }
/// ```
pub struct MappedDeviceMemory {
    memory: DeviceMemory,
    pointer: *mut c_void,
    coherent: bool,
}

// Note that `MappedDeviceMemory` doesn't implement `Drop`, as we don't need to unmap memory before
// freeing it.
//
// Vulkan specs, documentation of `vkFreeMemory`:
// > If a memory object is mapped at the time it is freed, it is implicitly unmapped.
//

impl MappedDeviceMemory {
    /// Unmaps the memory. It will no longer be accessible from the CPU.
    pub fn unmap(self) -> DeviceMemory {
        unsafe {
            let device = self.memory.device();
            let vk = device.pointers();
            vk.UnmapMemory(device.internal_object(), self.memory.memory);
        }

        self.memory
    }

    /// Gives access to the content of the memory.
    ///
    /// This function takes care of calling `vkInvalidateMappedMemoryRanges` and
    /// `vkFlushMappedMemoryRanges` on the given range. You are therefore encouraged to use the
    /// smallest range as possible, and to not call this function multiple times in a row for
    /// several small changes.
    ///
    /// # Safety
    ///
    /// - Type safety is not checked. You must ensure that `T` corresponds to the content of the
    ///   buffer.
    /// - Accesses are not synchronized. Synchronization must be handled outside of
    ///   the `MappedDeviceMemory`.
    ///
    #[inline]
    pub unsafe fn read_write<T: ?Sized>(&self, range: Range<usize>) -> CpuAccess<T>
        where T: Content
    {
        let vk = self.memory.device().pointers();
        let pointer = T::ref_from_ptr((self.pointer as usize + range.start) as *mut _,
                                      range.end - range.start)
            .unwrap(); // TODO: error

        if !self.coherent {
            let range = vk::MappedMemoryRange {
                sType: vk::STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
                pNext: ptr::null(),
                memory: self.memory.internal_object(),
                offset: range.start as u64,
                size: (range.end - range.start) as u64,
            };

            // TODO: check result?
            vk.InvalidateMappedMemoryRanges(self.memory.device().internal_object(), 1, &range);
        }

        CpuAccess {
            pointer: pointer,
            mem: self,
            coherent: self.coherent,
            range: range,
        }
    }
}

impl AsRef<DeviceMemory> for MappedDeviceMemory {
    #[inline]
    fn as_ref(&self) -> &DeviceMemory {
        &self.memory
    }
}

impl AsMut<DeviceMemory> for MappedDeviceMemory {
    #[inline]
    fn as_mut(&mut self) -> &mut DeviceMemory {
        &mut self.memory
    }
}

unsafe impl DeviceOwned for MappedDeviceMemory {
    #[inline]
    fn device(&self) -> &Arc<Device> {
        self.memory.device()
    }
}

unsafe impl Send for MappedDeviceMemory {
}
unsafe impl Sync for MappedDeviceMemory {
}

impl fmt::Debug for MappedDeviceMemory {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_tuple("MappedDeviceMemory")
            .field(&self.memory)
            .finish()
    }
}

/// Object that can be used to read or write the content of a `MappedDeviceMemory`.
///
/// This object derefs to the content, just like a `MutexGuard` for example.
pub struct CpuAccess<'a, T: ?Sized + 'a> {
    pointer: *mut T,
    mem: &'a MappedDeviceMemory,
    coherent: bool,
    range: Range<usize>,
}

impl<'a, T: ?Sized + 'a> CpuAccess<'a, T> {
    /// Builds a new `CpuAccess` to access a sub-part of the current `CpuAccess`.
    ///
    /// This function is unstable. Don't use it directly.
    // TODO: unsafe?
    // TODO: decide what to do with this
    #[doc(hidden)]
    #[inline]
    pub fn map<U: ?Sized + 'a, F>(self, f: F) -> CpuAccess<'a, U>
        where F: FnOnce(*mut T) -> *mut U
    {
        CpuAccess {
            pointer: f(self.pointer),
            mem: self.mem,
            coherent: self.coherent,
            range: self.range.clone(), // TODO: ?
        }
    }
}

unsafe impl<'a, T: ?Sized + 'a> Send for CpuAccess<'a, T> {
}
unsafe impl<'a, T: ?Sized + 'a> Sync for CpuAccess<'a, T> {
}

impl<'a, T: ?Sized + 'a> Deref for CpuAccess<'a, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.pointer }
    }
}

impl<'a, T: ?Sized + 'a> DerefMut for CpuAccess<'a, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.pointer }
    }
}

impl<'a, T: ?Sized + 'a> Drop for CpuAccess<'a, T> {
    #[inline]
    fn drop(&mut self) {
        // If the memory doesn't have the `coherent` flag, we need to flush the data.
        if !self.coherent {
            let vk = self.mem.as_ref().device().pointers();

            let range = vk::MappedMemoryRange {
                sType: vk::STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
                pNext: ptr::null(),
                memory: self.mem.as_ref().internal_object(),
                offset: self.range.start as u64,
                size: (self.range.end - self.range.start) as u64,
            };

            // TODO: check result?
            unsafe {
                vk.FlushMappedMemoryRanges(self.mem.as_ref().device().internal_object(), 1, &range);
            }
        }
    }
}

/// Error type returned by functions related to `DeviceMemory`.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DeviceMemoryAllocError {
    /// Not enough memory available.
    OomError(OomError),
    /// The maximum number of allocations has been exceeded.
    TooManyObjects,
    /// Memory map failed.
    MemoryMapFailed,
}

impl error::Error for DeviceMemoryAllocError {
    #[inline]
    fn description(&self) -> &str {
        match *self {
            DeviceMemoryAllocError::OomError(_) => "not enough memory available",
            DeviceMemoryAllocError::TooManyObjects =>
                "the maximum number of allocations has been exceeded",
            DeviceMemoryAllocError::MemoryMapFailed => "memory map failed",
        }
    }

    #[inline]
    fn cause(&self) -> Option<&dyn error::Error> {
        match *self {
            DeviceMemoryAllocError::OomError(ref err) => Some(err),
            _ => None,
        }
    }
}

impl fmt::Display for DeviceMemoryAllocError {
    #[inline]
    fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "{}", error::Error::description(self))
    }
}

impl From<Error> for DeviceMemoryAllocError {
    #[inline]
    fn from(err: Error) -> DeviceMemoryAllocError {
        match err {
            e @ Error::OutOfHostMemory |
            e @ Error::OutOfDeviceMemory => DeviceMemoryAllocError::OomError(e.into()),
            Error::TooManyObjects => DeviceMemoryAllocError::TooManyObjects,
            Error::MemoryMapFailed => DeviceMemoryAllocError::MemoryMapFailed,
            _ => panic!("unexpected error: {:?}", err),
        }
    }
}

impl From<OomError> for DeviceMemoryAllocError {
    #[inline]
    fn from(err: OomError) -> DeviceMemoryAllocError {
        DeviceMemoryAllocError::OomError(err)
    }
}

#[cfg(test)]
mod tests {
    use OomError;
    use memory::DeviceMemory;
    use memory::DeviceMemoryAllocError;

    #[test]
    fn create() {
        let (device, _) = gfx_dev_and_queue!();
        let mem_ty = device.physical_device().memory_types().next().unwrap();
        let _ = DeviceMemory::alloc(device.clone(), mem_ty, 256).unwrap();
    }

    #[test]
    fn zero_size() {
        let (device, _) = gfx_dev_and_queue!();
        let mem_ty = device.physical_device().memory_types().next().unwrap();
        assert_should_panic!({
                                 let _ = DeviceMemory::alloc(device.clone(), mem_ty, 0);
                             });
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn oom_single() {
        let (device, _) = gfx_dev_and_queue!();
        let mem_ty = device
            .physical_device()
            .memory_types()
            .filter(|m| !m.is_lazily_allocated())
            .next()
            .unwrap();

        match DeviceMemory::alloc(device.clone(), mem_ty, 0xffffffffffffffff) {
            Err(DeviceMemoryAllocError::OomError(OomError::OutOfDeviceMemory)) => (),
            _ => panic!(),
        }
    }

    #[test]
    #[ignore] // TODO: test fails for now on Mesa+Intel
    fn oom_multi() {
        let (device, _) = gfx_dev_and_queue!();
        let mem_ty = device
            .physical_device()
            .memory_types()
            .filter(|m| !m.is_lazily_allocated())
            .next()
            .unwrap();
        let heap_size = mem_ty.heap().size();

        let mut allocs = Vec::new();

        for _ in 0 .. 4 {
            match DeviceMemory::alloc(device.clone(), mem_ty, heap_size / 3) {
                Err(DeviceMemoryAllocError::OomError(OomError::OutOfDeviceMemory)) => return, // test succeeded
                Ok(a) => allocs.push(a),
                _ => (),
            }
        }

        panic!()
    }

    #[test]
    fn allocation_count() {
        let (device, _) = gfx_dev_and_queue!();
        let mem_ty = device.physical_device().memory_types().next().unwrap();
        assert_eq!(*device.allocation_count().lock().unwrap(), 0);
        let mem1 = DeviceMemory::alloc(device.clone(), mem_ty, 256).unwrap();
        assert_eq!(*device.allocation_count().lock().unwrap(), 1);
        {
            let mem2 = DeviceMemory::alloc(device.clone(), mem_ty, 256).unwrap();
            assert_eq!(*device.allocation_count().lock().unwrap(), 2);
        }
        assert_eq!(*device.allocation_count().lock().unwrap(), 1);
    }
}