Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use format::Format;
use image::ImageUsage;
use vk;

/// The capabilities of a surface when used by a physical device.
///
/// You have to match these capabilities when you create a swapchain.
#[derive(Clone, Debug)]
pub struct Capabilities {
    /// Minimum number of images that must be present in the swapchain.
    pub min_image_count: u32,

    /// Maximum number of images that must be present in the swapchain, or `None` if there is no
    /// maximum value. Note that "no maximum" doesn't mean that you can set a very high value, as
    /// you may still get out of memory errors.
    pub max_image_count: Option<u32>,

    /// The current dimensions of the surface. `None` means that the surface's dimensions will
    /// depend on the dimensions of the swapchain that you are going to create.
    pub current_extent: Option<[u32; 2]>,

    /// Minimum width and height of a swapchain that uses this surface.
    pub min_image_extent: [u32; 2],

    /// Maximum width and height of a swapchain that uses this surface.
    pub max_image_extent: [u32; 2],

    /// Maximum number of image layers if you create an image array. The minimum is 1.
    pub max_image_array_layers: u32,

    /// List of transforms supported for the swapchain.
    pub supported_transforms: SupportedSurfaceTransforms,

    /// Current transform used by the surface.
    pub current_transform: SurfaceTransform,

    /// List of composite alpha modes supports for the swapchain.
    pub supported_composite_alpha: SupportedCompositeAlpha,

    /// List of image usages that are supported for images of the swapchain. Only
    /// the `color_attachment` usage is guaranteed to be supported.
    pub supported_usage_flags: ImageUsage,

    /// List of formats supported for the swapchain.
    pub supported_formats: Vec<(Format, ColorSpace)>, // TODO: https://github.com/KhronosGroup/Vulkan-Docs/issues/207

    /// List of present modes that are supported. `Fifo` is always guaranteed to be supported.
    pub present_modes: SupportedPresentModes,
}

/// The way presenting a swapchain is accomplished.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u32)]
pub enum PresentMode {
    /// Immediately shows the image to the user. May result in visible tearing.
    Immediate = vk::PRESENT_MODE_IMMEDIATE_KHR,

    /// The action of presenting an image puts it in wait. When the next vertical blanking period
    /// happens, the waiting image is effectively shown to the user. If an image is presented while
    /// another one is waiting, it is replaced.
    Mailbox = vk::PRESENT_MODE_MAILBOX_KHR,

    /// The action of presenting an image adds it to a queue of images. At each vertical blanking
    /// period, the queue is popped and an image is presented.
    ///
    /// Guaranteed to be always supported.
    ///
    /// This is the equivalent of OpenGL's `SwapInterval` with a value of 1.
    Fifo = vk::PRESENT_MODE_FIFO_KHR,

    /// Same as `Fifo`, except that if the queue was empty during the previous vertical blanking
    /// period then it is equivalent to `Immediate`.
    ///
    /// This is the equivalent of OpenGL's `SwapInterval` with a value of -1.
    Relaxed = vk::PRESENT_MODE_FIFO_RELAXED_KHR,

    // TODO: These can't be enabled yet because they have to be used with shared present surfaces
    // which vulkano doesnt support yet.
    //SharedDemand = vk::PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR,
    //SharedContinuous = vk::PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR,
}

/// List of `PresentMode`s that are supported.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SupportedPresentModes {
    pub immediate: bool,
    pub mailbox: bool,
    pub fifo: bool,
    pub relaxed: bool,
    pub shared_demand: bool,
    pub shared_continuous: bool,
}

pub fn supported_present_modes_from_list<I>(elem: I) -> SupportedPresentModes
    where I: Iterator<Item = vk::PresentModeKHR>
{
    let mut result = SupportedPresentModes::none();
    for e in elem {
        match e {
            vk::PRESENT_MODE_IMMEDIATE_KHR => result.immediate = true,
            vk::PRESENT_MODE_MAILBOX_KHR => result.mailbox = true,
            vk::PRESENT_MODE_FIFO_KHR => result.fifo = true,
            vk::PRESENT_MODE_FIFO_RELAXED_KHR => result.relaxed = true,
            vk::PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR => result.shared_demand = true,
            vk::PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR => result.shared_continuous = true,
            _ => { }
        }
    }
    result
}

impl SupportedPresentModes {
    /// Builds a `SupportedPresentModes` with all fields set to false.
    #[inline]
    pub fn none() -> SupportedPresentModes {
        SupportedPresentModes {
            immediate: false,
            mailbox: false,
            fifo: false,
            relaxed: false,
            shared_demand: false,
            shared_continuous: false,
        }
    }

    /// Returns true if the given present mode is in this list of supported modes.
    #[inline]
    pub fn supports(&self, mode: PresentMode) -> bool {
        match mode {
            PresentMode::Immediate => self.immediate,
            PresentMode::Mailbox => self.mailbox,
            PresentMode::Fifo => self.fifo,
            PresentMode::Relaxed => self.relaxed,
        }
    }

    /// Returns an iterator to the list of supported present modes.
    #[inline]
    pub fn iter(&self) -> SupportedPresentModesIter {
        SupportedPresentModesIter(self.clone())
    }
}

/// Enumeration of the `PresentMode`s that are supported.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SupportedPresentModesIter(SupportedPresentModes);

impl Iterator for SupportedPresentModesIter {
    type Item = PresentMode;

    #[inline]
    fn next(&mut self) -> Option<PresentMode> {
        if self.0.immediate {
            self.0.immediate = false;
            return Some(PresentMode::Immediate);
        }
        if self.0.mailbox {
            self.0.mailbox = false;
            return Some(PresentMode::Mailbox);
        }
        if self.0.fifo {
            self.0.fifo = false;
            return Some(PresentMode::Fifo);
        }
        if self.0.relaxed {
            self.0.relaxed = false;
            return Some(PresentMode::Relaxed);
        }
        None
    }
}

/// A transformation to apply to the image before showing it on the screen.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u32)]
pub enum SurfaceTransform {
    /// Don't transform the image.
    Identity = vk::SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
    /// Rotate 90 degrees.
    Rotate90 = vk::SURFACE_TRANSFORM_ROTATE_90_BIT_KHR,
    /// Rotate 180 degrees.
    Rotate180 = vk::SURFACE_TRANSFORM_ROTATE_180_BIT_KHR,
    /// Rotate 270 degrees.
    Rotate270 = vk::SURFACE_TRANSFORM_ROTATE_270_BIT_KHR,
    /// Mirror the image horizontally.
    HorizontalMirror = vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR,
    /// Mirror the image horizontally and rotate 90 degrees.
    HorizontalMirrorRotate90 = vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR,
    /// Mirror the image horizontally and rotate 180 degrees.
    HorizontalMirrorRotate180 = vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR,
    /// Mirror the image horizontally and rotate 270 degrees.
    HorizontalMirrorRotate270 = vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR,
    /// Let the operating system or driver implementation choose.
    Inherit = vk::SURFACE_TRANSFORM_INHERIT_BIT_KHR,
}

/// How the alpha values of the pixels of the window are treated.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u32)]
pub enum CompositeAlpha {
    /// The alpha channel of the image is ignored. All the pixels are considered as if they have a
    /// value of 1.0.
    Opaque = vk::COMPOSITE_ALPHA_OPAQUE_BIT_KHR,

    /// The alpha channel of the image is respected. The color channels are expected to have
    /// already been multiplied by the alpha value.
    PreMultiplied = vk::COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,

    /// The alpha channel of the image is respected. The color channels will be multiplied by the
    /// alpha value by the compositor before being added to what is behind.
    PostMultiplied = vk::COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,

    /// Let the operating system or driver implementation choose.
    Inherit = vk::COMPOSITE_ALPHA_INHERIT_BIT_KHR,
}

/// List of supported composite alpha modes.
///
/// See the docs of `CompositeAlpha`.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[allow(missing_docs)]
pub struct SupportedCompositeAlpha {
    pub opaque: bool,
    pub pre_multiplied: bool,
    pub post_multiplied: bool,
    pub inherit: bool,
}

pub fn supported_composite_alpha_from_bits(val: u32) -> SupportedCompositeAlpha {
    let mut result = SupportedCompositeAlpha::none();
    if (val & vk::COMPOSITE_ALPHA_OPAQUE_BIT_KHR) != 0 {
        result.opaque = true;
    }
    if (val & vk::COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR) != 0 {
        result.pre_multiplied = true;
    }
    if (val & vk::COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR) != 0 {
        result.post_multiplied = true;
    }
    if (val & vk::COMPOSITE_ALPHA_INHERIT_BIT_KHR) != 0 {
        result.inherit = true;
    }
    result
}

impl SupportedCompositeAlpha {
    /// Builds a `SupportedCompositeAlpha` with all fields set to false.
    #[inline]
    pub fn none() -> SupportedCompositeAlpha {
        SupportedCompositeAlpha {
            opaque: false,
            pre_multiplied: false,
            post_multiplied: false,
            inherit: false,
        }
    }

    /// Returns true if the given `CompositeAlpha` is in this list.
    #[inline]
    pub fn supports(&self, value: CompositeAlpha) -> bool {
        match value {
            CompositeAlpha::Opaque => self.opaque,
            CompositeAlpha::PreMultiplied => self.pre_multiplied,
            CompositeAlpha::PostMultiplied => self.post_multiplied,
            CompositeAlpha::Inherit => self.inherit,
        }
    }

    /// Returns an iterator to the list of supported composite alpha.
    #[inline]
    pub fn iter(&self) -> SupportedCompositeAlphaIter {
        SupportedCompositeAlphaIter(self.clone())
    }
}

/// Enumeration of the `CompositeAlpha` that are supported.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SupportedCompositeAlphaIter(SupportedCompositeAlpha);

impl Iterator for SupportedCompositeAlphaIter {
    type Item = CompositeAlpha;

    #[inline]
    fn next(&mut self) -> Option<CompositeAlpha> {
        if self.0.opaque {
            self.0.opaque = false;
            return Some(CompositeAlpha::Opaque);
        }
        if self.0.pre_multiplied {
            self.0.pre_multiplied = false;
            return Some(CompositeAlpha::PreMultiplied);
        }
        if self.0.post_multiplied {
            self.0.post_multiplied = false;
            return Some(CompositeAlpha::PostMultiplied);
        }
        if self.0.inherit {
            self.0.inherit = false;
            return Some(CompositeAlpha::Inherit);
        }
        None
    }
}

/// List of supported composite alpha modes.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SupportedSurfaceTransforms {
    pub identity: bool,
    pub rotate90: bool,
    pub rotate180: bool,
    pub rotate270: bool,
    pub horizontal_mirror: bool,
    pub horizontal_mirror_rotate90: bool,
    pub horizontal_mirror_rotate180: bool,
    pub horizontal_mirror_rotate270: bool,
    pub inherit: bool,
}

pub fn surface_transforms_from_bits(val: vk::SurfaceTransformFlagsKHR)
                                    -> SupportedSurfaceTransforms {
    macro_rules! v {
        ($val:expr, $out:ident, $e:expr, $f:ident) => (
            if ($val & $e) != 0 { $out.$f = true; }
        );
    }

    let mut result = SupportedSurfaceTransforms::none();
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
       identity);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_ROTATE_90_BIT_KHR,
       rotate90);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_ROTATE_180_BIT_KHR,
       rotate180);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_ROTATE_270_BIT_KHR,
       rotate270);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR,
       horizontal_mirror);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR,
       horizontal_mirror_rotate90);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR,
       horizontal_mirror_rotate180);
    v!(val,
       result,
       vk::SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR,
       horizontal_mirror_rotate270);
    v!(val, result, vk::SURFACE_TRANSFORM_INHERIT_BIT_KHR, inherit);
    result
}

impl SupportedSurfaceTransforms {
    /// Builds a `SupportedSurfaceTransforms` with all fields set to false.
    #[inline]
    pub fn none() -> SupportedSurfaceTransforms {
        SupportedSurfaceTransforms {
            identity: false,
            rotate90: false,
            rotate180: false,
            rotate270: false,
            horizontal_mirror: false,
            horizontal_mirror_rotate90: false,
            horizontal_mirror_rotate180: false,
            horizontal_mirror_rotate270: false,
            inherit: false,
        }
    }

    /// Returns true if the given `SurfaceTransform` is in this list.
    #[inline]
    pub fn supports(&self, value: SurfaceTransform) -> bool {
        match value {
            SurfaceTransform::Identity => self.identity,
            SurfaceTransform::Rotate90 => self.rotate90,
            SurfaceTransform::Rotate180 => self.rotate180,
            SurfaceTransform::Rotate270 => self.rotate270,
            SurfaceTransform::HorizontalMirror => self.horizontal_mirror,
            SurfaceTransform::HorizontalMirrorRotate90 => self.horizontal_mirror_rotate90,
            SurfaceTransform::HorizontalMirrorRotate180 => self.horizontal_mirror_rotate180,
            SurfaceTransform::HorizontalMirrorRotate270 => self.horizontal_mirror_rotate270,
            SurfaceTransform::Inherit => self.inherit,
        }
    }

    /// Returns an iterator to the list of supported composite alpha.
    #[inline]
    pub fn iter(&self) -> SupportedSurfaceTransformsIter {
        SupportedSurfaceTransformsIter(self.clone())
    }
}

/// Enumeration of the `SurfaceTransform` that are supported.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SupportedSurfaceTransformsIter(SupportedSurfaceTransforms);

impl Iterator for SupportedSurfaceTransformsIter {
    type Item = SurfaceTransform;

    #[inline]
    fn next(&mut self) -> Option<SurfaceTransform> {
        if self.0.identity {
            self.0.identity = false;
            return Some(SurfaceTransform::Identity);
        }
        if self.0.rotate90 {
            self.0.rotate90 = false;
            return Some(SurfaceTransform::Rotate90);
        }
        if self.0.rotate180 {
            self.0.rotate180 = false;
            return Some(SurfaceTransform::Rotate180);
        }
        if self.0.rotate270 {
            self.0.rotate270 = false;
            return Some(SurfaceTransform::Rotate270);
        }
        if self.0.horizontal_mirror {
            self.0.horizontal_mirror = false;
            return Some(SurfaceTransform::HorizontalMirror);
        }
        if self.0.horizontal_mirror_rotate90 {
            self.0.horizontal_mirror_rotate90 = false;
            return Some(SurfaceTransform::HorizontalMirrorRotate90);
        }
        if self.0.horizontal_mirror_rotate180 {
            self.0.horizontal_mirror_rotate180 = false;
            return Some(SurfaceTransform::HorizontalMirrorRotate180);
        }
        if self.0.horizontal_mirror_rotate270 {
            self.0.horizontal_mirror_rotate270 = false;
            return Some(SurfaceTransform::HorizontalMirrorRotate270);
        }
        if self.0.inherit {
            self.0.inherit = false;
            return Some(SurfaceTransform::Inherit);
        }
        None
    }
}

impl Default for SurfaceTransform {
    #[inline]
    fn default() -> SurfaceTransform {
        SurfaceTransform::Identity
    }
}

/// How the presentation engine should interpret the data.
///
/// # A quick lesson about color spaces
///
/// ## What is a color space?
///
/// Each pixel of a monitor is made of three components: one red, one green, and one blue. In the
/// past, computers would simply send to the monitor the intensity of each of the three components.
///
/// This proved to be problematic, because depending on the brand of the monitor the colors would
/// not exactly be the same. For example on some monitors, a value of `[1.0, 0.0, 0.0]` would be a
/// bit more orange than on others.
///
/// In order to standardize this, there exist what are called *color spaces*: sRGB, AdobeRGB,
/// DCI-P3, scRGB, etc. When you manipulate RGB values in a specific color space, these values have
/// a precise absolute meaning in terms of color, that is the same across all systems and monitors.
///
/// > **Note**: Color spaces are orthogonal to concept of RGB. *RGB* only indicates what is the
/// > representation of the data, but not how it is interpreted. You can think of this a bit like
/// > text encoding. An *RGB* value is a like a byte, in other words it is the medium by which
/// > values are communicated, and a *color space* is like a text encoding (eg. UTF-8), in other
/// > words it is the way the value should be interpreted.
///
/// The most commonly used color space today is sRGB. Most monitors today use this color space,
/// and most images files are encoded in this color space.
///
/// ## Pixel formats and linear vs non-linear
///
/// In Vulkan all images have a specific format in which the data is stored. The data of an image
/// consists of pixels in RGB but contains no information about the color space (or lack thereof)
/// of these pixels. You are free to store them in whatever color space you want.
///
/// But one big practical problem with color spaces is that they are sometimes not linear, and in
/// particular the popular sRGB color space is not linear. In a non-linear color space, a value of
/// `[0.6, 0.6, 0.6]` for example is **not** twice as bright as a value of `[0.3, 0.3, 0.3]`. This
/// is problematic, because operations such as taking the average of two colors or calculating the
/// lighting of a texture with a dot product are mathematically incorrect and will produce
/// incorrect colors.
///
/// > **Note**: If the texture format has an alpha component, it is not affected by the color space
/// > and always behaves linearly.
///
/// In order to solve this Vulkan also provides image formats with the `Srgb` suffix, which are
/// expected to contain RGB data in the sRGB color space. When you sample an image with such a
/// format from a shader, the implementation will automatically turn the pixel values into a linear
/// color space that is suitable for linear operations (such as additions or multiplications).
/// When you write to a framebuffer attachment with such a format, the implementation will
/// automatically perform the opposite conversion. These conversions are most of the time performed
/// by the hardware and incur no additional cost.
///
/// ## Color space of the swapchain
///
/// The color space that you specify when you create a swapchain is how the implementation will
/// interpret the raw data inside of the image.
///
/// > **Note**: The implementation can choose to send the data in the swapchain image directly to
/// > the monitor, but it can also choose to write it in an intermediary buffer that is then read
/// > by the operating system or windowing system. Therefore the color space that the
/// > implementation supports is not necessarily the same as the one supported by the monitor.
///
/// It is *your* job to ensure that the data in the swapchain image is in the color space
/// that is specified here, otherwise colors will be incorrect.
/// The implementation will never perform any additional automatic conversion after the colors have
/// been written to the swapchain image.
///
/// # How do I handle this correctly?
///
/// The easiest way to handle color spaces in a cross-platform program is:
///
/// - Always request the `SrgbNonLinear` color space when creating the swapchain.
/// - Make sure that all your image files use the sRGB color space, and load them in images whose
///   format has the `Srgb` suffix. Only use non-sRGB image formats for intermediary computations
///   or to store non-color data.
/// - Swapchain images should have a format with the `Srgb` suffix.
///
/// > **Note**: It is unclear whether the `SrgbNonLinear` color space is always supported by the
/// > the implementation or not. See https://github.com/KhronosGroup/Vulkan-Docs/issues/442.
///
/// > **Note**: Lots of developers are confused by color spaces. You can sometimes find articles
/// > talking about gamma correction and suggestion to put your colors to the power 2.2 for
/// > example. These are all hacks and you should use the sRGB pixel formats instead.
///
/// If you follow these three rules, then everything should render the same way on all platforms.
///
/// Additionally you can try detect whether the implementation supports any additional color space
/// and perform a manual conversion to that color space from inside your shader.
///
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u32)]
pub enum ColorSpace {
    SrgbNonLinear = vk::COLOR_SPACE_SRGB_NONLINEAR_KHR,
    DisplayP3NonLinear = vk::COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT,
    ExtendedSrgbLinear = vk::COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT,
    DciP3Linear = vk::COLOR_SPACE_DCI_P3_LINEAR_EXT,
    DciP3NonLinear = vk::COLOR_SPACE_DCI_P3_NONLINEAR_EXT,
    Bt709Linear = vk::COLOR_SPACE_BT709_LINEAR_EXT,
    Bt709NonLinear = vk::COLOR_SPACE_BT709_NONLINEAR_EXT,
    Bt2020Linear = vk::COLOR_SPACE_BT2020_LINEAR_EXT,
    Hdr10St2084 = vk::COLOR_SPACE_HDR10_ST2084_EXT,
    DolbyVision = vk::COLOR_SPACE_DOLBYVISION_EXT,
    Hdr10Hlg = vk::COLOR_SPACE_HDR10_HLG_EXT,
    AdobeRgbLinear = vk::COLOR_SPACE_ADOBERGB_LINEAR_EXT,
    AdobeRgbNonLinear = vk::COLOR_SPACE_ADOBERGB_NONLINEAR_EXT,
    PassThrough = vk::COLOR_SPACE_PASS_THROUGH_EXT,
}

#[inline]
pub fn color_space_from_num(val: u32) -> ColorSpace {
    match val {
        vk::COLOR_SPACE_SRGB_NONLINEAR_KHR => ColorSpace::SrgbNonLinear,
        vk::COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT => ColorSpace::DisplayP3NonLinear,
        vk::COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT => ColorSpace::ExtendedSrgbLinear,
        vk::COLOR_SPACE_DCI_P3_LINEAR_EXT => ColorSpace::DciP3Linear,
        vk::COLOR_SPACE_DCI_P3_NONLINEAR_EXT => ColorSpace::DciP3NonLinear,
        vk::COLOR_SPACE_BT709_LINEAR_EXT => ColorSpace::Bt709Linear,
        vk::COLOR_SPACE_BT709_NONLINEAR_EXT => ColorSpace::Bt709NonLinear,
        vk::COLOR_SPACE_BT2020_LINEAR_EXT => ColorSpace::Bt2020Linear,
        vk::COLOR_SPACE_HDR10_ST2084_EXT => ColorSpace::Hdr10St2084,
        vk::COLOR_SPACE_DOLBYVISION_EXT => ColorSpace::DolbyVision,
        vk::COLOR_SPACE_HDR10_HLG_EXT => ColorSpace::Hdr10Hlg,
        vk::COLOR_SPACE_ADOBERGB_LINEAR_EXT => ColorSpace::AdobeRgbLinear,
        vk::COLOR_SPACE_ADOBERGB_NONLINEAR_EXT => ColorSpace::AdobeRgbNonLinear,
        vk::COLOR_SPACE_PASS_THROUGH_EXT => ColorSpace::PassThrough,
        _ => panic!("Wrong value for color space enum"),
    }
}