Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
// Copyright (c) 2017 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.

use std::mem;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::MutexGuard;
use std::time::Duration;

use buffer::BufferAccess;
use command_buffer::submit::SubmitAnyBuilder;
use command_buffer::submit::SubmitCommandBufferBuilder;
use device::Device;
use device::DeviceOwned;
use device::Queue;
use image::ImageAccess;
use image::ImageLayout;
use sync::AccessCheckError;
use sync::AccessFlagBits;
use sync::Fence;
use sync::FlushError;
use sync::GpuFuture;
use sync::PipelineStages;

/// Builds a new fence signal future.
#[inline]
pub fn then_signal_fence<F>(future: F, behavior: FenceSignalFutureBehavior) -> FenceSignalFuture<F>
    where F: GpuFuture
{
    let device = future.device().clone();

    assert!(future.queue().is_some()); // TODO: document

    let fence = Fence::from_pool(device.clone()).unwrap();
    FenceSignalFuture {
        device: device,
        state: Mutex::new(FenceSignalFutureState::Pending(future, fence)),
        behavior: behavior,
    }
}

/// Describes the behavior of the future if you submit something after it.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum FenceSignalFutureBehavior {
    /// Continue execution on the same queue.
    Continue,
    /// Wait for the fence to be signalled before submitting any further operation.
    Block {
        /// How long to block the current thread.
        timeout: Option<Duration>,
    },
}

/// Represents a fence being signaled after a previous event.
///
/// Contrary to most other future types, it is possible to block the current thread until the event
/// happens. This is done by calling the `wait()` function.
///
/// Also note that the `GpuFuture` trait is implemented on `Arc<FenceSignalFuture<_>>`.
/// This means that you can put this future in an `Arc` and keep a copy of it somewhere in order
/// to know when the execution reached that point.
///
/// ```
/// use std::sync::Arc;
/// use vulkano::sync::GpuFuture;
///
/// # let future: Box<GpuFuture> = return;
/// // Assuming you have a chain of operations, like this:
/// // let future = ...
/// //      .then_execute(foo)
/// //      .then_execute(bar)
///
/// // You can signal a fence at this point of the chain, and put the future in an `Arc`.
/// let fence_signal = Arc::new(future.then_signal_fence());
///
/// // And then continue the chain:
/// // fence_signal.clone()
/// //      .then_execute(baz)
/// //      .then_execute(qux)
///
/// // Later you can wait until you reach the point of `fence_signal`:
/// fence_signal.wait(None).unwrap();
/// ```
#[must_use = "Dropping this object will immediately block the thread until the GPU has finished \
              processing the submission"]
pub struct FenceSignalFuture<F>
    where F: GpuFuture
{
    // Current state. See the docs of `FenceSignalFutureState`.
    state: Mutex<FenceSignalFutureState<F>>,
    // The device of the future.
    device: Arc<Device>,
    behavior: FenceSignalFutureBehavior,
}

// This future can be in three different states: pending (ie. newly-created), submitted (ie. the
// command that submits the fence has been submitted), or cleaned (ie. the previous future has
// been dropped).
enum FenceSignalFutureState<F> {
    // Newly-created. Not submitted yet.
    Pending(F, Fence),

    // Partially submitted to the queue. Only happens in situations where submitting requires two
    // steps, and when the first step succeeded while the second step failed.
    //
    // Note that if there's ever a submit operation that needs three steps we will need to rework
    // this code, as it was designed for two-step operations only.
    PartiallyFlushed(F, Fence),

    // Submitted to the queue.
    Flushed(F, Fence),

    // The submission is finished. The previous future and the fence have been cleaned.
    Cleaned,

    // A function panicked while the state was being modified. Should never happen.
    Poisoned,
}

impl<F> FenceSignalFuture<F>
    where F: GpuFuture
{
    /// Blocks the current thread until the fence is signaled by the GPU. Performs a flush if
    /// necessary.
    ///
    /// If `timeout` is `None`, then the wait is infinite. Otherwise the thread will unblock after
    /// the specified timeout has elapsed and an error will be returned.
    ///
    /// If the wait is successful, this function also cleans any resource locked by previous
    /// submissions.
    pub fn wait(&self, timeout: Option<Duration>) -> Result<(), FlushError> {
        let mut state = self.state.lock().unwrap();

        self.flush_impl(&mut state)?;

        match mem::replace(&mut *state, FenceSignalFutureState::Cleaned) {
            FenceSignalFutureState::Flushed(previous, fence) => {
                fence.wait(timeout)?;
                unsafe {
                    previous.signal_finished();
                }
                Ok(())
            },
            FenceSignalFutureState::Cleaned => Ok(()),
            _ => unreachable!(),
        }
    }
}

impl<F> FenceSignalFuture<F>
    where F: GpuFuture
{
    // Implementation of `cleanup_finished`, but takes a `&self` instead of a `&mut self`.
    // This is an external function so that we can also call it from an `Arc<FenceSignalFuture>`.
    #[inline]
    fn cleanup_finished_impl(&self) {
        let mut state = self.state.lock().unwrap();

        match *state {
            FenceSignalFutureState::Flushed(ref mut prev, ref fence) => {
                match fence.wait(Some(Duration::from_secs(0))) {
                    Ok(()) => unsafe {
                        prev.signal_finished()
                    },
                    Err(_) => {
                        prev.cleanup_finished();
                        return;
                    },
                }
            },
            FenceSignalFutureState::Pending(ref mut prev, _) => {
                prev.cleanup_finished();
                return;
            },
            FenceSignalFutureState::PartiallyFlushed(ref mut prev, _) => {
                prev.cleanup_finished();
                return;
            },
            _ => return,
        };

        // This code can only be reached if we're already flushed and waiting on the fence
        // succeeded.
        *state = FenceSignalFutureState::Cleaned;
    }

    // Implementation of `flush`. You must lock the state and pass the mutex guard here.
    fn flush_impl(&self, state: &mut MutexGuard<FenceSignalFutureState<F>>)
                  -> Result<(), FlushError> {
        unsafe {
            // In this function we temporarily replace the current state with `Poisoned` at the
            // beginning, and we take care to always put back a value into `state` before
            // returning (even in case of error).
            let old_state = mem::replace(&mut **state, FenceSignalFutureState::Poisoned);

            let (previous, fence, partially_flushed) = match old_state {
                FenceSignalFutureState::Pending(prev, fence) => {
                    (prev, fence, false)
                },
                FenceSignalFutureState::PartiallyFlushed(prev, fence) => {
                    (prev, fence, true)
                },
                other => {
                    // We were already flushed in the past, or we're already poisoned. Don't do
                    // anything.
                    **state = other;
                    return Ok(());
                },
            };

            // TODO: meh for unwrap
            let queue = previous.queue().unwrap().clone();

            // There are three possible outcomes for the flush operation: success, partial success
            // in which case `result` will contain `Err(OutcomeErr::Partial)`, or total failure
            // in which case `result` will contain `Err(OutcomeErr::Full)`.
            enum OutcomeErr<E> {
                Partial(E),
                Full(E),
            }
            let result = match previous.build_submission()? {
                SubmitAnyBuilder::Empty => {
                    debug_assert!(!partially_flushed);
                    let mut b = SubmitCommandBufferBuilder::new();
                    b.set_fence_signal(&fence);
                    b.submit(&queue).map_err(|err| OutcomeErr::Full(err.into()))
                },
                SubmitAnyBuilder::SemaphoresWait(sem) => {
                    debug_assert!(!partially_flushed);
                    let b: SubmitCommandBufferBuilder = sem.into();
                    debug_assert!(!b.has_fence());
                    b.submit(&queue).map_err(|err| OutcomeErr::Full(err.into()))
                },
                SubmitAnyBuilder::CommandBuffer(mut cb_builder) => {
                    debug_assert!(!partially_flushed);
                    // The assert below could technically be a debug assertion as it is part of the
                    // safety contract of the trait. However it is easy to get this wrong if you
                    // write a custom implementation, and if so the consequences would be
                    // disastrous and hard to debug. Therefore we prefer to just use a regular
                    // assertion.
                    assert!(!cb_builder.has_fence());
                    cb_builder.set_fence_signal(&fence);
                    cb_builder
                        .submit(&queue)
                        .map_err(|err| OutcomeErr::Full(err.into()))
                },
                SubmitAnyBuilder::BindSparse(mut sparse) => {
                    debug_assert!(!partially_flushed);
                    // Same remark as `CommandBuffer`.
                    assert!(!sparse.has_fence());
                    sparse.set_fence_signal(&fence);
                    sparse
                        .submit(&queue)
                        .map_err(|err| OutcomeErr::Full(err.into()))
                },
                SubmitAnyBuilder::QueuePresent(present) => {
                    let intermediary_result = if partially_flushed {
                        Ok(())
                    } else {
                        present.submit(&queue)
                    };
                    match intermediary_result {
                        Ok(()) => {
                            let mut b = SubmitCommandBufferBuilder::new();
                            b.set_fence_signal(&fence);
                            b.submit(&queue).map_err(|err| OutcomeErr::Partial(err.into()))
                        },
                        Err(err) => {
                            Err(OutcomeErr::Full(err.into()))
                        },
                    }
                },
            };

            // Restore the state before returning.
            match result {
                Ok(()) => {
                    **state = FenceSignalFutureState::Flushed(previous, fence);
                    Ok(())
                },
                Err(OutcomeErr::Partial(err)) => {
                    **state = FenceSignalFutureState::PartiallyFlushed(previous, fence);
                    Err(err)
                },
                Err(OutcomeErr::Full(err)) => {
                    **state = FenceSignalFutureState::Pending(previous, fence);
                    Err(err)
                },
            }
        }
    }
}

impl<F> FenceSignalFutureState<F> {
    #[inline]
    fn get_prev(&self) -> Option<&F> {
        match *self {
            FenceSignalFutureState::Pending(ref prev, _) => Some(prev),
            FenceSignalFutureState::PartiallyFlushed(ref prev, _) => Some(prev),
            FenceSignalFutureState::Flushed(ref prev, _) => Some(prev),
            FenceSignalFutureState::Cleaned => None,
            FenceSignalFutureState::Poisoned => None,
        }
    }
}

unsafe impl<F> GpuFuture for FenceSignalFuture<F>
    where F: GpuFuture
{
    #[inline]
    fn cleanup_finished(&mut self) {
        self.cleanup_finished_impl()
    }

    #[inline]
    unsafe fn build_submission(&self) -> Result<SubmitAnyBuilder, FlushError> {
        let mut state = self.state.lock().unwrap();
        self.flush_impl(&mut state)?;

        match *state {
            FenceSignalFutureState::Flushed(_, ref fence) => {
                match self.behavior {
                    FenceSignalFutureBehavior::Block { timeout } => {
                        fence.wait(timeout)?;
                    },
                    FenceSignalFutureBehavior::Continue => (),
                }
            },
            FenceSignalFutureState::Cleaned |
            FenceSignalFutureState::Poisoned => (),
            FenceSignalFutureState::Pending(_, _) => unreachable!(),
            FenceSignalFutureState::PartiallyFlushed(_, _) => unreachable!(),
        }

        Ok(SubmitAnyBuilder::Empty)
    }

    #[inline]
    fn flush(&self) -> Result<(), FlushError> {
        let mut state = self.state.lock().unwrap();
        self.flush_impl(&mut state)
    }

    #[inline]
    unsafe fn signal_finished(&self) {
        let state = self.state.lock().unwrap();
        match *state {
            FenceSignalFutureState::Flushed(ref prev, _) => {
                prev.signal_finished();
            },
            FenceSignalFutureState::Cleaned |
            FenceSignalFutureState::Poisoned => (),
            _ => unreachable!(),
        }
    }

    #[inline]
    fn queue_change_allowed(&self) -> bool {
        match self.behavior {
            FenceSignalFutureBehavior::Continue => {
                let state = self.state.lock().unwrap();
                if state.get_prev().is_some() {
                    false
                } else {
                    true
                }
            },
            FenceSignalFutureBehavior::Block { .. } => {
                true
            },
        }
    }

    #[inline]
    fn queue(&self) -> Option<Arc<Queue>> {
        let state = self.state.lock().unwrap();
        if let Some(prev) = state.get_prev() {
            prev.queue()
        } else {
            None
        }
    }

    #[inline]
    fn check_buffer_access(
        &self, buffer: &dyn BufferAccess, exclusive: bool, queue: &Queue)
        -> Result<Option<(PipelineStages, AccessFlagBits)>, AccessCheckError> {
        let state = self.state.lock().unwrap();
        if let Some(previous) = state.get_prev() {
            previous.check_buffer_access(buffer, exclusive, queue)
        } else {
            Err(AccessCheckError::Unknown)
        }
    }

    #[inline]
    fn check_image_access(&self, image: &dyn ImageAccess, layout: ImageLayout, exclusive: bool,
                          queue: &Queue)
                          -> Result<Option<(PipelineStages, AccessFlagBits)>, AccessCheckError> {
        let state = self.state.lock().unwrap();
        if let Some(previous) = state.get_prev() {
            previous.check_image_access(image, layout, exclusive, queue)
        } else {
            Err(AccessCheckError::Unknown)
        }
    }
}

unsafe impl<F> DeviceOwned for FenceSignalFuture<F>
    where F: GpuFuture
{
    #[inline]
    fn device(&self) -> &Arc<Device> {
        &self.device
    }
}

impl<F> Drop for FenceSignalFuture<F>
    where F: GpuFuture
{
    fn drop(&mut self) {
        let mut state = self.state.lock().unwrap();

        // We ignore any possible error while submitting for now. Problems are handled below.
        let _ = self.flush_impl(&mut state);

        match mem::replace(&mut *state, FenceSignalFutureState::Cleaned) {
            FenceSignalFutureState::Flushed(previous, fence) => {
                // This is a normal situation. Submitting worked.
                // TODO: handle errors?
                fence.wait(None).unwrap();
                unsafe {
                    previous.signal_finished();
                }
            },
            FenceSignalFutureState::Cleaned => {
                // Also a normal situation. The user called `cleanup_finished()` before dropping.
            },
            FenceSignalFutureState::Poisoned => {
                // The previous future was already dropped and blocked the current queue.
            },
            FenceSignalFutureState::Pending(_, _) |
            FenceSignalFutureState::PartiallyFlushed(_, _) => {
                // Flushing produced an error. There's nothing more we can do except drop the
                // previous future and let it block the current queue.
            },
        }
    }
}

unsafe impl<F> GpuFuture for Arc<FenceSignalFuture<F>>
    where F: GpuFuture
{
    #[inline]
    fn cleanup_finished(&mut self) {
        self.cleanup_finished_impl()
    }

    #[inline]
    unsafe fn build_submission(&self) -> Result<SubmitAnyBuilder, FlushError> {
        // Note that this is sound because we always return `SubmitAnyBuilder::Empty`. See the
        // documentation of `build_submission`.
        (**self).build_submission()
    }

    #[inline]
    fn flush(&self) -> Result<(), FlushError> {
        (**self).flush()
    }

    #[inline]
    unsafe fn signal_finished(&self) {
        (**self).signal_finished()
    }

    #[inline]
    fn queue_change_allowed(&self) -> bool {
        (**self).queue_change_allowed()
    }

    #[inline]
    fn queue(&self) -> Option<Arc<Queue>> {
        (**self).queue()
    }

    #[inline]
    fn check_buffer_access(
        &self, buffer: &dyn BufferAccess, exclusive: bool, queue: &Queue)
        -> Result<Option<(PipelineStages, AccessFlagBits)>, AccessCheckError> {
        (**self).check_buffer_access(buffer, exclusive, queue)
    }

    #[inline]
    fn check_image_access(&self, image: &dyn ImageAccess, layout: ImageLayout, exclusive: bool,
                          queue: &Queue)
                          -> Result<Option<(PipelineStages, AccessFlagBits)>, AccessCheckError> {
        (**self).check_image_access(image, layout, exclusive, queue)
    }
}