Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
use std::cell::RefCell;
use std::collections::HashMap;
use std::error::Error;
use std::process;
use std::rc::Rc;
use std::time::{Duration, Instant};

use sctk::reexports::client::protocol::wl_compositor::WlCompositor;
use sctk::reexports::client::protocol::wl_shm::WlShm;
use sctk::reexports::client::Display;

use sctk::reexports::calloop;

use sctk::environment::Environment;
use sctk::seat::pointer::{ThemeManager, ThemeSpec};
use sctk::WaylandSource;

use crate::event::{Event, StartCause, WindowEvent};
use crate::event_loop::{ControlFlow, EventLoopWindowTarget as RootEventLoopWindowTarget};
use crate::platform_impl::platform::sticky_exit_callback;

use super::env::{WindowingFeatures, WinitEnv};
use super::output::OutputManager;
use super::seat::SeatManager;
use super::window::shim::{self, WindowUpdate};
use super::{DeviceId, WindowId};

mod proxy;
mod sink;
mod state;

pub use proxy::EventLoopProxy;
pub use state::WinitState;

use sink::EventSink;

pub struct EventLoopWindowTarget<T> {
    /// Wayland display.
    pub display: Display,

    /// Environment to handle object creation, etc.
    pub env: Environment<WinitEnv>,

    /// Event loop handle.
    pub event_loop_handle: calloop::LoopHandle<WinitState>,

    /// Output manager.
    pub output_manager: OutputManager,

    /// State that we share across callbacks.
    pub state: RefCell<WinitState>,

    /// Wayland source.
    pub wayland_source: Rc<calloop::Source<WaylandSource>>,

    /// A proxy to wake up event loop.
    pub event_loop_awakener: calloop::ping::Ping,

    /// The available windowing features.
    pub windowing_features: WindowingFeatures,

    /// Theme manager to manage cursors.
    ///
    /// It's being shared amoung all windows to avoid loading
    /// multiple similar themes.
    pub theme_manager: ThemeManager,

    _marker: std::marker::PhantomData<T>,
}

pub struct EventLoop<T: 'static> {
    /// Event loop.
    event_loop: calloop::EventLoop<WinitState>,

    /// Wayland display.
    display: Display,

    /// Pending user events.
    pending_user_events: Rc<RefCell<Vec<T>>>,

    /// Sender of user events.
    user_events_sender: calloop::channel::Sender<T>,

    /// Wayland source of events.
    wayland_source: Rc<calloop::Source<WaylandSource>>,

    /// Window target.
    window_target: RootEventLoopWindowTarget<T>,

    /// Output manager.
    _seat_manager: SeatManager,
}

impl<T: 'static> EventLoop<T> {
    pub fn new() -> Result<EventLoop<T>, Box<dyn Error>> {
        // Connect to wayland server and setup event queue.
        let display = Display::connect_to_env()?;
        let mut event_queue = display.create_event_queue();
        let display_proxy = display.attach(event_queue.token());

        // Setup environment.
        let env = Environment::new(&display_proxy, &mut event_queue, WinitEnv::new())?;

        // Create event loop.
        let event_loop = calloop::EventLoop::<WinitState>::new()?;
        // Build windowing features.
        let windowing_features = WindowingFeatures::new(&env);

        // Create a theme manager.
        let compositor = env.require_global::<WlCompositor>();
        let shm = env.require_global::<WlShm>();
        let theme_manager = ThemeManager::init(ThemeSpec::System, compositor, shm);

        // Setup theme seat and output managers.
        let seat_manager = SeatManager::new(&env, event_loop.handle(), theme_manager.clone());
        let output_manager = OutputManager::new(&env);

        // A source of events that we plug into our event loop.
        let wayland_source = WaylandSource::new(event_queue).quick_insert(event_loop.handle())?;
        let wayland_source = Rc::new(wayland_source);

        // A source of user events.
        let pending_user_events = Rc::new(RefCell::new(Vec::new()));
        let pending_user_events_clone = pending_user_events.clone();
        let (user_events_sender, user_events_channel) = calloop::channel::channel();

        // User events channel.
        event_loop
            .handle()
            .insert_source(user_events_channel, move |event, _, _| {
                if let calloop::channel::Event::Msg(msg) = event {
                    pending_user_events_clone.borrow_mut().push(msg);
                }
            })?;

        // An event's loop awakener to wake up for window events from winit's windows.
        let (event_loop_awakener, event_loop_awakener_source) = calloop::ping::make_ping()?;

        // Handler of window requests.
        event_loop.handle().insert_source(
            event_loop_awakener_source,
            move |_, _, winit_state| {
                shim::handle_window_requests(winit_state);
            },
        )?;

        let event_loop_handle = event_loop.handle();
        let window_map = HashMap::new();
        let event_sink = EventSink::new();
        let window_updates = HashMap::new();

        // Create event loop window target.
        let event_loop_window_target = EventLoopWindowTarget {
            display: display.clone(),
            env,
            state: RefCell::new(WinitState {
                window_map,
                event_sink,
                window_updates,
            }),
            event_loop_handle,
            output_manager,
            event_loop_awakener,
            wayland_source: wayland_source.clone(),
            windowing_features,
            theme_manager,
            _marker: std::marker::PhantomData,
        };

        // Create event loop itself.
        let event_loop = Self {
            event_loop,
            display,
            pending_user_events,
            wayland_source,
            _seat_manager: seat_manager,
            user_events_sender,
            window_target: RootEventLoopWindowTarget {
                p: crate::platform_impl::EventLoopWindowTarget::Wayland(event_loop_window_target),
                _marker: std::marker::PhantomData,
            },
        };

        Ok(event_loop)
    }

    pub fn run<F>(mut self, callback: F) -> !
    where
        F: FnMut(Event<'_, T>, &RootEventLoopWindowTarget<T>, &mut ControlFlow) + 'static,
    {
        self.run_return(callback);
        process::exit(0)
    }

    pub fn run_return<F>(&mut self, mut callback: F)
    where
        F: FnMut(Event<'_, T>, &RootEventLoopWindowTarget<T>, &mut ControlFlow),
    {
        // Send pending events to the server.
        let _ = self.display.flush();

        let mut control_flow = ControlFlow::default();

        let pending_user_events = self.pending_user_events.clone();

        callback(
            Event::NewEvents(StartCause::Init),
            &self.window_target,
            &mut control_flow,
        );

        let mut window_updates: Vec<(WindowId, WindowUpdate)> = Vec::new();
        let mut event_sink_back_buffer = Vec::new();

        // NOTE We break on errors from dispatches, since if we've got protocol error
        // libwayland-client/wayland-rs will inform us anyway, but crashing downstream is not
        // really an option. Instead we inform that the event loop got destroyed. We may
        // communicate an error that something was terminated, but winit doesn't provide us
        // with an API to do that via some event.
        loop {
            // Handle pending user events. We don't need back buffer, since we can't dispatch
            // user events indirectly via callback to the user.
            for user_event in pending_user_events.borrow_mut().drain(..) {
                sticky_exit_callback(
                    Event::UserEvent(user_event),
                    &self.window_target,
                    &mut control_flow,
                    &mut callback,
                );
            }

            // Process 'new' pending updates.
            self.with_state(|state| {
                window_updates.clear();
                window_updates.extend(
                    state
                        .window_updates
                        .iter_mut()
                        .map(|(wid, window_update)| (*wid, window_update.take())),
                );
            });

            for (window_id, window_update) in window_updates.iter_mut() {
                if let Some(scale_factor) = window_update.scale_factor.map(|f| f as f64) {
                    let mut physical_size = self.with_state(|state| {
                        let window_handle = state.window_map.get(&window_id).unwrap();
                        let mut size = window_handle.size.lock().unwrap();

                        // Update the new logical size if it was changed.
                        let window_size = window_update.size.unwrap_or(*size);
                        *size = window_size;

                        window_size.to_physical(scale_factor)
                    });

                    sticky_exit_callback(
                        Event::WindowEvent {
                            window_id: crate::window::WindowId(
                                crate::platform_impl::WindowId::Wayland(*window_id),
                            ),
                            event: WindowEvent::ScaleFactorChanged {
                                scale_factor,
                                new_inner_size: &mut physical_size,
                            },
                        },
                        &self.window_target,
                        &mut control_flow,
                        &mut callback,
                    );

                    // We don't update size on a window handle since we'll do that later
                    // when handling size update.
                    let new_logical_size = physical_size.to_logical(scale_factor);
                    window_update.size = Some(new_logical_size);
                }

                if let Some(size) = window_update.size.take() {
                    let physical_size = self.with_state(|state| {
                        let window_handle = state.window_map.get_mut(&window_id).unwrap();
                        let mut window_size = window_handle.size.lock().unwrap();

                        // Always issue resize event on scale factor change.
                        let physical_size =
                            if window_update.scale_factor.is_none() && *window_size == size {
                                // The size hasn't changed, don't inform downstream about that.
                                None
                            } else {
                                *window_size = size;
                                let scale_factor =
                                    sctk::get_surface_scale_factor(&window_handle.window.surface());
                                let physical_size = size.to_physical(scale_factor as f64);
                                Some(physical_size)
                            };

                        // We still perform all of those resize related logic even if the size
                        // hasn't changed, since GNOME relies on `set_geometry` calls after
                        // configures.
                        window_handle.window.resize(size.width, size.height);
                        window_handle.window.refresh();

                        // Mark that refresh isn't required, since we've done it right now.
                        window_update.refresh_frame = false;

                        physical_size
                    });

                    if let Some(physical_size) = physical_size {
                        sticky_exit_callback(
                            Event::WindowEvent {
                                window_id: crate::window::WindowId(
                                    crate::platform_impl::WindowId::Wayland(*window_id),
                                ),
                                event: WindowEvent::Resized(physical_size),
                            },
                            &self.window_target,
                            &mut control_flow,
                            &mut callback,
                        );
                    }
                }

                if window_update.close_window {
                    sticky_exit_callback(
                        Event::WindowEvent {
                            window_id: crate::window::WindowId(
                                crate::platform_impl::WindowId::Wayland(*window_id),
                            ),
                            event: WindowEvent::CloseRequested,
                        },
                        &self.window_target,
                        &mut control_flow,
                        &mut callback,
                    );
                }
            }

            // The purpose of the back buffer and that swap is to not hold borrow_mut when
            // we're doing callback to the user, since we can double borrow if the user decides
            // to create a window in one of those callbacks.
            self.with_state(|state| {
                std::mem::swap(
                    &mut event_sink_back_buffer,
                    &mut state.event_sink.window_events,
                )
            });

            // Handle pending window events.
            for event in event_sink_back_buffer.drain(..) {
                let event = event.map_nonuser_event().unwrap();
                sticky_exit_callback(event, &self.window_target, &mut control_flow, &mut callback);
            }

            // Send events cleared.
            sticky_exit_callback(
                Event::MainEventsCleared,
                &self.window_target,
                &mut control_flow,
                &mut callback,
            );

            // Handle RedrawRequested events.
            for (window_id, window_update) in window_updates.iter() {
                // Handle refresh of the frame.
                if window_update.refresh_frame {
                    self.with_state(|state| {
                        let window_handle = state.window_map.get_mut(&window_id).unwrap();
                        window_handle.window.refresh();
                        if !window_update.redraw_requested {
                            window_handle.window.surface().commit();
                        }
                    });
                }

                // Handle redraw request.
                if window_update.redraw_requested {
                    sticky_exit_callback(
                        Event::RedrawRequested(crate::window::WindowId(
                            crate::platform_impl::WindowId::Wayland(*window_id),
                        )),
                        &self.window_target,
                        &mut control_flow,
                        &mut callback,
                    );
                }
            }

            // Send RedrawEventCleared.
            sticky_exit_callback(
                Event::RedrawEventsCleared,
                &self.window_target,
                &mut control_flow,
                &mut callback,
            );

            // Send pending events to the server.
            let _ = self.display.flush();

            // During the run of the user callback, some other code monitoring and reading the
            // Wayland socket may have been run (mesa for example does this with vsync), if that
            // is the case, some events may have been enqueued in our event queue.
            //
            // If some messages are there, the event loop needs to behave as if it was instantly
            // woken up by messages arriving from the Wayland socket, to avoid delaying the
            // dispatch of these events until we're woken up again.
            let instant_wakeup = {
                let handle = self.event_loop.handle();
                let source = self.wayland_source.clone();
                let dispatched = handle.with_source(&source, |wayland_source| {
                    let queue = wayland_source.queue();
                    self.with_state(|state| {
                        queue.dispatch_pending(state, |_, _, _| unimplemented!())
                    })
                });

                if let Ok(dispatched) = dispatched {
                    dispatched > 0
                } else {
                    break;
                }
            };

            match control_flow {
                ControlFlow::Exit => break,
                ControlFlow::Poll => {
                    // Non-blocking dispatch.
                    let timeout = Duration::from_millis(0);
                    if self.loop_dispatch(Some(timeout)).is_err() {
                        break;
                    }

                    callback(
                        Event::NewEvents(StartCause::Poll),
                        &self.window_target,
                        &mut control_flow,
                    );
                }
                ControlFlow::Wait => {
                    let timeout = if instant_wakeup {
                        Some(Duration::from_millis(0))
                    } else {
                        None
                    };

                    if self.loop_dispatch(timeout).is_err() {
                        break;
                    }

                    callback(
                        Event::NewEvents(StartCause::WaitCancelled {
                            start: Instant::now(),
                            requested_resume: None,
                        }),
                        &self.window_target,
                        &mut control_flow,
                    );
                }
                ControlFlow::WaitUntil(deadline) => {
                    let start = Instant::now();

                    // Compute the amount of time we'll block for.
                    let duration = if deadline > start && !instant_wakeup {
                        deadline - start
                    } else {
                        Duration::from_millis(0)
                    };

                    if self.loop_dispatch(Some(duration)).is_err() {
                        break;
                    }

                    let now = Instant::now();

                    if now < deadline {
                        callback(
                            Event::NewEvents(StartCause::WaitCancelled {
                                start,
                                requested_resume: Some(deadline),
                            }),
                            &self.window_target,
                            &mut control_flow,
                        )
                    } else {
                        callback(
                            Event::NewEvents(StartCause::ResumeTimeReached {
                                start,
                                requested_resume: deadline,
                            }),
                            &self.window_target,
                            &mut control_flow,
                        )
                    }
                }
            }
        }

        callback(Event::LoopDestroyed, &self.window_target, &mut control_flow);
    }

    #[inline]
    pub fn create_proxy(&self) -> EventLoopProxy<T> {
        EventLoopProxy::new(self.user_events_sender.clone())
    }

    #[inline]
    pub fn window_target(&self) -> &RootEventLoopWindowTarget<T> {
        &self.window_target
    }

    fn with_state<U, F: FnOnce(&mut WinitState) -> U>(&mut self, f: F) -> U {
        let state = match &mut self.window_target.p {
            crate::platform_impl::EventLoopWindowTarget::Wayland(ref mut window_target) => {
                window_target.state.get_mut()
            }
            #[cfg(feature = "x11")]
            _ => unreachable!(),
        };

        f(state)
    }

    fn loop_dispatch<D: Into<Option<std::time::Duration>>>(
        &mut self,
        timeout: D,
    ) -> std::io::Result<()> {
        let mut state = match &mut self.window_target.p {
            crate::platform_impl::EventLoopWindowTarget::Wayland(ref mut window_target) => {
                window_target.state.get_mut()
            }
            #[cfg(feature = "x11")]
            _ => unreachable!(),
        };

        self.event_loop.dispatch(timeout, &mut state)
    }
}