Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use std::cmp;

use super::*;

// Friendly neighborhood axis-aligned rectangle
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AaRect {
    x: i64,
    y: i64,
    width: i64,
    height: i64,
}

impl AaRect {
    pub fn new((x, y): (i32, i32), (width, height): (u32, u32)) -> Self {
        let (x, y) = (x as i64, y as i64);
        let (width, height) = (width as i64, height as i64);
        AaRect {
            x,
            y,
            width,
            height,
        }
    }

    pub fn contains_point(&self, x: i64, y: i64) -> bool {
        x >= self.x && x <= self.x + self.width && y >= self.y && y <= self.y + self.height
    }

    pub fn get_overlapping_area(&self, other: &Self) -> i64 {
        let x_overlap = cmp::max(
            0,
            cmp::min(self.x + self.width, other.x + other.width) - cmp::max(self.x, other.x),
        );
        let y_overlap = cmp::max(
            0,
            cmp::min(self.y + self.height, other.y + other.height) - cmp::max(self.y, other.y),
        );
        x_overlap * y_overlap
    }
}

#[derive(Debug, Default)]
pub struct TranslatedCoords {
    pub x_rel_root: c_int,
    pub y_rel_root: c_int,
    pub child: ffi::Window,
}

#[derive(Debug, Default)]
pub struct Geometry {
    pub root: ffi::Window,
    // If you want positions relative to the root window, use translate_coords.
    // Note that the overwhelming majority of window managers are reparenting WMs, thus the window
    // ID we get from window creation is for a nested window used as the window's client area. If
    // you call get_geometry with that window ID, then you'll get the position of that client area
    // window relative to the parent it's nested in (the frame), which isn't helpful if you want
    // to know the frame position.
    pub x_rel_parent: c_int,
    pub y_rel_parent: c_int,
    // In that same case, this will give you client area size.
    pub width: c_uint,
    pub height: c_uint,
    // xmonad and dwm were the only WMs tested that use the border return at all.
    // The majority of WMs seem to simply fill it with 0 unconditionally.
    pub border: c_uint,
    pub depth: c_uint,
}

#[derive(Debug, Clone)]
pub struct FrameExtents {
    pub left: c_ulong,
    pub right: c_ulong,
    pub top: c_ulong,
    pub bottom: c_ulong,
}

impl FrameExtents {
    pub fn new(left: c_ulong, right: c_ulong, top: c_ulong, bottom: c_ulong) -> Self {
        FrameExtents {
            left,
            right,
            top,
            bottom,
        }
    }

    pub fn from_border(border: c_ulong) -> Self {
        Self::new(border, border, border, border)
    }
}

#[derive(Debug, Clone)]
pub struct LogicalFrameExtents {
    pub left: f64,
    pub right: f64,
    pub top: f64,
    pub bottom: f64,
}

#[derive(Debug, Clone, PartialEq)]
pub enum FrameExtentsHeuristicPath {
    Supported,
    UnsupportedNested,
    UnsupportedBordered,
}

#[derive(Debug, Clone)]
pub struct FrameExtentsHeuristic {
    pub frame_extents: FrameExtents,
    pub heuristic_path: FrameExtentsHeuristicPath,
}

impl FrameExtentsHeuristic {
    pub fn inner_pos_to_outer(&self, x: i32, y: i32) -> (i32, i32) {
        use self::FrameExtentsHeuristicPath::*;
        if self.heuristic_path != UnsupportedBordered {
            (
                x - self.frame_extents.left as i32,
                y - self.frame_extents.top as i32,
            )
        } else {
            (x, y)
        }
    }

    pub fn inner_size_to_outer(&self, width: u32, height: u32) -> (u32, u32) {
        (
            width.saturating_add(
                self.frame_extents
                    .left
                    .saturating_add(self.frame_extents.right) as u32,
            ),
            height.saturating_add(
                self.frame_extents
                    .top
                    .saturating_add(self.frame_extents.bottom) as u32,
            ),
        )
    }
}

impl XConnection {
    // This is adequate for inner_position
    pub fn translate_coords(
        &self,
        window: ffi::Window,
        root: ffi::Window,
    ) -> Result<TranslatedCoords, XError> {
        let mut coords = TranslatedCoords::default();

        unsafe {
            (self.xlib.XTranslateCoordinates)(
                self.display,
                window,
                root,
                0,
                0,
                &mut coords.x_rel_root,
                &mut coords.y_rel_root,
                &mut coords.child,
            );
        }

        self.check_errors()?;
        Ok(coords)
    }

    // This is adequate for inner_size
    pub fn get_geometry(&self, window: ffi::Window) -> Result<Geometry, XError> {
        let mut geometry = Geometry::default();

        let _status = unsafe {
            (self.xlib.XGetGeometry)(
                self.display,
                window,
                &mut geometry.root,
                &mut geometry.x_rel_parent,
                &mut geometry.y_rel_parent,
                &mut geometry.width,
                &mut geometry.height,
                &mut geometry.border,
                &mut geometry.depth,
            )
        };

        self.check_errors()?;
        Ok(geometry)
    }

    fn get_frame_extents(&self, window: ffi::Window) -> Option<FrameExtents> {
        let extents_atom = unsafe { self.get_atom_unchecked(b"_NET_FRAME_EXTENTS\0") };

        if !hint_is_supported(extents_atom) {
            return None;
        }

        // Of the WMs tested, xmonad, i3, dwm, IceWM (1.3.x and earlier), and blackbox don't
        // support this. As this is part of EWMH (Extended Window Manager Hints), it's likely to
        // be unsupported by many smaller WMs.
        let extents: Option<Vec<c_ulong>> = self
            .get_property(window, extents_atom, ffi::XA_CARDINAL)
            .ok();

        extents.and_then(|extents| {
            if extents.len() >= 4 {
                Some(FrameExtents {
                    left: extents[0],
                    right: extents[1],
                    top: extents[2],
                    bottom: extents[3],
                })
            } else {
                None
            }
        })
    }

    pub fn is_top_level(&self, window: ffi::Window, root: ffi::Window) -> Option<bool> {
        let client_list_atom = unsafe { self.get_atom_unchecked(b"_NET_CLIENT_LIST\0") };

        if !hint_is_supported(client_list_atom) {
            return None;
        }

        let client_list: Option<Vec<ffi::Window>> = self
            .get_property(root, client_list_atom, ffi::XA_WINDOW)
            .ok();

        client_list.map(|client_list| client_list.contains(&window))
    }

    fn get_parent_window(&self, window: ffi::Window) -> Result<ffi::Window, XError> {
        let parent = unsafe {
            let mut root = 0;
            let mut parent = 0;
            let mut children: *mut ffi::Window = ptr::null_mut();
            let mut nchildren = 0;

            // What's filled into `parent` if `window` is the root window?
            let _status = (self.xlib.XQueryTree)(
                self.display,
                window,
                &mut root,
                &mut parent,
                &mut children,
                &mut nchildren,
            );

            // The list of children isn't used
            if children != ptr::null_mut() {
                (self.xlib.XFree)(children as *mut _);
            }

            parent
        };
        self.check_errors().map(|_| parent)
    }

    fn climb_hierarchy(
        &self,
        window: ffi::Window,
        root: ffi::Window,
    ) -> Result<ffi::Window, XError> {
        let mut outer_window = window;
        loop {
            let candidate = self.get_parent_window(outer_window)?;
            if candidate == root {
                break;
            }
            outer_window = candidate;
        }
        Ok(outer_window)
    }

    pub fn get_frame_extents_heuristic(
        &self,
        window: ffi::Window,
        root: ffi::Window,
    ) -> FrameExtentsHeuristic {
        use self::FrameExtentsHeuristicPath::*;

        // Position relative to root window.
        // With rare exceptions, this is the position of a nested window. Cases where the window
        // isn't nested are outlined in the comments throghout this function, but in addition to
        // that, fullscreen windows often aren't nested.
        let (inner_y_rel_root, child) = {
            let coords = self
                .translate_coords(window, root)
                .expect("Failed to translate window coordinates");
            (coords.y_rel_root, coords.child)
        };

        let (width, height, border) = {
            let inner_geometry = self
                .get_geometry(window)
                .expect("Failed to get inner window geometry");
            (
                inner_geometry.width,
                inner_geometry.height,
                inner_geometry.border,
            )
        };

        // The first condition is only false for un-nested windows, but isn't always false for
        // un-nested windows. Mutter/Muffin/Budgie and Marco present a mysterious discrepancy:
        // when y is on the range [0, 2] and if the window has been unfocused since being
        // undecorated (or was undecorated upon construction), the first condition is true,
        // requiring us to rely on the second condition.
        let nested = !(window == child || self.is_top_level(child, root) == Some(true));

        // Hopefully the WM supports EWMH, allowing us to get exact info on the window frames.
        if let Some(mut frame_extents) = self.get_frame_extents(window) {
            // Mutter/Muffin/Budgie and Marco preserve their decorated frame extents when
            // decorations are disabled, but since the window becomes un-nested, it's easy to
            // catch.
            if !nested {
                frame_extents = FrameExtents::new(0, 0, 0, 0);
            }

            // The difference between the nested window's position and the outermost window's
            // position is equivalent to the frame size. In most scenarios, this is equivalent to
            // manually climbing the hierarchy as is done in the case below. Here's a list of
            // known discrepancies:
            // * Mutter/Muffin/Budgie gives decorated windows a margin of 9px (only 7px on top) in
            //   addition to a 1px semi-transparent border. The margin can be easily observed by
            //   using a screenshot tool to get a screenshot of a selected window, and is
            //   presumably used for drawing drop shadows. Getting window geometry information
            //   via hierarchy-climbing results in this margin being included in both the
            //   position and outer size, so a window positioned at (0, 0) would be reported as
            //   having a position (-10, -8).
            // * Compiz has a drop shadow margin just like Mutter/Muffin/Budgie, though it's 10px
            //   on all sides, and there's no additional border.
            // * Enlightenment otherwise gets a y position equivalent to inner_y_rel_root.
            //   Without decorations, there's no difference. This is presumably related to
            //   Enlightenment's fairly unique concept of window position; it interprets
            //   positions given to XMoveWindow as a client area position rather than a position
            //   of the overall window.

            FrameExtentsHeuristic {
                frame_extents,
                heuristic_path: Supported,
            }
        } else if nested {
            // If the position value we have is for a nested window used as the client area, we'll
            // just climb up the hierarchy and get the geometry of the outermost window we're
            // nested in.
            let outer_window = self
                .climb_hierarchy(window, root)
                .expect("Failed to climb window hierarchy");
            let (outer_y, outer_width, outer_height) = {
                let outer_geometry = self
                    .get_geometry(outer_window)
                    .expect("Failed to get outer window geometry");
                (
                    outer_geometry.y_rel_parent,
                    outer_geometry.width,
                    outer_geometry.height,
                )
            };

            // Since we have the geometry of the outermost window and the geometry of the client
            // area, we can figure out what's in between.
            let diff_x = outer_width.saturating_sub(width);
            let diff_y = outer_height.saturating_sub(height);
            let offset_y = inner_y_rel_root.saturating_sub(outer_y) as c_uint;

            let left = diff_x / 2;
            let right = left;
            let top = offset_y;
            let bottom = diff_y.saturating_sub(offset_y);

            let frame_extents =
                FrameExtents::new(left.into(), right.into(), top.into(), bottom.into());
            FrameExtentsHeuristic {
                frame_extents,
                heuristic_path: UnsupportedNested,
            }
        } else {
            // This is the case for xmonad and dwm, AKA the only WMs tested that supplied a
            // border value. This is convenient, since we can use it to get an accurate frame.
            let frame_extents = FrameExtents::from_border(border.into());
            FrameExtentsHeuristic {
                frame_extents,
                heuristic_path: UnsupportedBordered,
            }
        }
    }
}