1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//! Basic manipulation of rectangles.

use std::cmp;

/// A rectangular region of non-zero width and height.
/// # Examples
/// ```
/// use imageproc::rect::Rect;
/// use imageproc::rect::Region;
///
/// // Construct a rectangle with top-left corner at (4, 5), width 6 and height 7.
/// let rect = Rect::at(4, 5).of_size(6, 7);
///
/// // Contains top-left point:
/// assert_eq!(rect.left(), 4);
/// assert_eq!(rect.top(), 5);
/// assert!(rect.contains(rect.left(), rect.top()));
///
/// // Contains bottom-right point, at (left + width - 1, top + height - 1):
/// assert_eq!(rect.right(), 9);
/// assert_eq!(rect.bottom(), 11);
/// assert!(rect.contains(rect.right(), rect.bottom()));
/// ```
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Rect {
    left: i32,
    top: i32,
    width: u32,
    height: u32,
}

/// A geometrical representation of a set of 2D points with coordinate type T.
pub trait Region<T> {
    /// Whether this region contains the given point.
    fn contains(&self, x: T, y: T) -> bool;
}

impl Rect {
    /// Reduces possibility of confusing coordinates and dimensions
    /// when specifying rects.
    ///
    /// See the [struct-level documentation](struct.Rect.html) for examples.
    pub fn at(x: i32, y: i32) -> RectPosition {
        RectPosition { left: x, top: y }
    }

    /// Smallest y-coordinate reached by rect.
    ///
    /// See the [struct-level documentation](struct.Rect.html) for examples.
    pub fn top(&self) -> i32 {
        self.top
    }

    /// Smallest x-coordinate reached by rect.
    ///
    /// See the [struct-level documentation](struct.Rect.html) for examples.
    pub fn left(&self) -> i32 {
        self.left
    }

    /// Greatest y-coordinate reached by rect.
    ///
    /// See the [struct-level documentation](struct.Rect.html) for examples.
    pub fn bottom(&self) -> i32 {
        self.top + (self.height as i32) - 1
    }

    /// Greatest x-coordinate reached by rect.
    ///
    /// See the [struct-level documentation](struct.Rect.html) for examples.
    pub fn right(&self) -> i32 {
        self.left + (self.width as i32) - 1
    }

    /// Width of rect.
    pub fn width(&self) -> u32 {
        self.width
    }

    /// Height of rect.
    pub fn height(&self) -> u32 {
        self.height
    }

    /// Returns the intersection of self and other, or none if they are are disjoint.
    ///
    /// # Examples
    /// ```
    /// use imageproc::rect::Rect;
    /// use imageproc::rect::Region;
    ///
    /// // Intersecting a rectangle with itself
    /// let r = Rect::at(4, 5).of_size(6, 7);
    /// assert_eq!(r.intersect(r), Some(r));
    ///
    /// // Intersecting overlapping but non-equal rectangles
    /// let r = Rect::at(0, 0).of_size(5, 5);
    /// let s = Rect::at(1, 4).of_size(10, 12);
    /// let i = Rect::at(1, 4).of_size(4, 1);
    /// assert_eq!(r.intersect(s), Some(i));
    ///
    /// // Intersecting disjoint rectangles
    /// let r = Rect::at(0, 0).of_size(5, 5);
    /// let s = Rect::at(10, 10).of_size(100, 12);
    /// assert_eq!(r.intersect(s), None);
    /// ```
    pub fn intersect(&self, other: Rect) -> Option<Rect> {
        let left = cmp::max(self.left, other.left);
        let top = cmp::max(self.top, other.top);
        let right = cmp::min(self.right(), other.right());
        let bottom = cmp::min(self.bottom(), other.bottom());

        if right < left || bottom < top {
            return None;
        }

        Some(Rect {
            left,
            top,
            width: (right - left) as u32 + 1,
            height: (bottom - top) as u32 + 1,
        })
    }
}

impl Region<i32> for Rect {
    fn contains(&self, x: i32, y: i32) -> bool {
        self.left <= x && x <= self.right() && self.top <= y && y <= self.bottom()
    }
}

impl Region<f32> for Rect {
    fn contains(&self, x: f32, y: f32) -> bool {
        self.left as f32 <= x
            && x <= self.right() as f32
            && self.top as f32 <= y
            && y <= self.bottom() as f32
    }
}

/// Position of the top left of a rectangle.
/// Only used when building a [`Rect`](struct.Rect.html).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct RectPosition {
    left: i32,
    top: i32,
}

impl RectPosition {
    /// Construct a rectangle from a position and size. Width and height
    /// are required to be strictly positive.
    ///
    /// See the [`Rect`](struct.Rect.html) documentation for examples.
    pub fn of_size(self, width: u32, height: u32) -> Rect {
        assert!(width > 0, "width must be strictly positive");
        assert!(height > 0, "height must be strictly positive");
        Rect {
            left: self.left,
            top: self.top,
            width,
            height,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{Rect, Region};

    #[test]
    #[should_panic]
    fn test_rejects_empty_rectangle() {
        Rect::at(1, 2).of_size(0, 1);
    }

    #[test]
    fn test_contains_i32() {
        let r = Rect::at(5, 5).of_size(6, 6);
        assert!(r.contains(5, 5));
        assert!(r.contains(10, 10));
        assert!(!r.contains(10, 11));
        assert!(!r.contains(11, 10));
    }

    #[test]
    fn test_contains_f32() {
        let r = Rect::at(5, 5).of_size(6, 6);
        assert!(r.contains(5f32, 5f32));
        assert!(!r.contains(10.1f32, 10f32));
    }
}