1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//! An implementation of disjoint set forests for union find.

/// Data structure for efficient union find.
pub struct DisjointSetForest {
    /// Number of forest elements.
    count: usize,
    /// parent[i] is the index of the parent
    /// of the element with index i. If parent[i] == i
    /// then i is a root.
    parent: Vec<usize>,
    /// tree_size[i] is the size of the tree rooted at i.
    tree_size: Vec<usize>,
}

impl DisjointSetForest {
    /// Constructs forest of singletons with count elements.
    pub fn new(count: usize) -> DisjointSetForest {
        let parent: Vec<usize> = (0..count).collect();
        let tree_size = vec![1 as usize; count];
        DisjointSetForest {
            count,
            parent,
            tree_size,
        }
    }

    /// Returns the number of trees in the forest.
    pub fn num_trees(&self) -> usize {
        self.parent
            .iter()
            .enumerate()
            .fold(0, |acc, (i, p)| acc + if i == *p { 1 } else { 0 })
    }

    /// Returns index of the root of the tree containing i.
    /// Needs mutable reference to self for path compression.
    pub fn root(&mut self, i: usize) -> usize {
        assert!(i < self.count);
        let mut j = i;
        loop {
            unsafe {
                let p = *self.parent.get_unchecked(j);
                *self.parent.get_unchecked_mut(j) = *self.parent.get_unchecked(p);
                if j == p {
                    break;
                }
                j = p;
            }
        }
        j
    }

    /// Returns true if i and j are in the same tree.
    /// Need mutable reference to self for path compression.
    pub fn find(&mut self, i: usize, j: usize) -> bool {
        assert!(i < self.count && j < self.count);
        self.root(i) == self.root(j)
    }

    /// Unions the trees containing i and j.
    pub fn union(&mut self, i: usize, j: usize) {
        assert!(i < self.count && j < self.count);
        let p = self.root(i);
        let q = self.root(j);
        if p == q {
            return;
        }
        unsafe {
            let p_size = *self.tree_size.get_unchecked(p);
            let q_size = *self.tree_size.get_unchecked(q);
            if p_size < q_size {
                *self.parent.get_unchecked_mut(p) = q;
                *self.tree_size.get_unchecked_mut(q) = p_size + q_size;
            } else {
                *self.parent.get_unchecked_mut(q) = p;
                *self.tree_size.get_unchecked_mut(p) = p_size + q_size;
            }
        }
    }

    /// Returns the elements of each tree.
    pub fn trees(&mut self) -> Vec<Vec<usize>> {
        use std::collections::HashMap;

        // Maps a tree root to the index of the set
        // containing its children
        let mut root_sets: HashMap<usize, usize> = HashMap::new();

        let mut sets: Vec<Vec<usize>> = vec![];
        for i in 0..self.count {
            let root = self.root(i);
            match root_sets.get(&root).cloned() {
                Some(set_idx) => {
                    sets[set_idx].push(i);
                }
                None => {
                    let idx = sets.len();
                    let set = vec![i];
                    sets.push(set);
                    root_sets.insert(root, idx);
                }
            }
        }
        sets
    }
}

#[cfg(test)]
mod tests {
    use super::DisjointSetForest;
    use ::test;
    use rand::distributions::Uniform;
    use rand::prelude::*;

    #[test]
    fn test_trees() {
        //    3         4
        //    |        /  \
        //    1       5    7
        //   /  \     |
        //  0    2    6
        #[rustfmt::skip]
        let mut forest = DisjointSetForest {
            count: 8,
            // element:     0, 1, 2, 3, 4, 5, 6, 7
            parent:    vec![1, 3, 1, 3, 4, 4, 5, 4],
            tree_size: vec![1, 3, 1, 4, 4, 2, 1, 1],
        };

        assert_eq!(forest.trees(), vec![vec![0, 1, 2, 3], vec![4, 5, 6, 7]]);
    }

    #[test]
    fn test_union_find_sequence() {
        let mut forest = DisjointSetForest::new(6);
        // 0  1  2  3  4  5

        //                             0, 1, 2, 3, 4, 5
        assert_eq!(forest.parent, vec![0, 1, 2, 3, 4, 5]);
        assert_eq!(forest.num_trees(), 6);

        forest.union(0, 4);
        // 0  1  2  3  5
        // |
        // 4

        //                             0, 1, 2, 3, 4, 5
        assert_eq!(forest.parent, vec![0, 1, 2, 3, 0, 5]);
        assert_eq!(forest.num_trees(), 5);

        forest.union(1, 3);
        // 0  1  2  5
        // |  |
        // 4  3

        //                             0, 1, 2, 3, 4, 5
        assert_eq!(forest.parent, vec![0, 1, 2, 1, 0, 5]);
        assert_eq!(forest.num_trees(), 4);

        forest.union(3, 2);
        // 0    1     5
        // |   / \
        // 4  3   2

        //                             0, 1, 2, 3, 4, 5
        assert_eq!(forest.parent, vec![0, 1, 1, 1, 0, 5]);
        assert_eq!(forest.num_trees(), 3);

        forest.union(2, 4);
        //    1     5
        //  / | \
        // 0  3  2
        // |
        // 4

        //                             0, 1, 2, 3, 4, 5
        assert_eq!(forest.parent, vec![1, 1, 1, 1, 0, 5]);
        assert_eq!(forest.num_trees(), 2);
    }

    #[bench]
    fn bench_disjoint_set_forest(b: &mut test::Bencher) {
        let num_nodes = 500;
        let num_edges = 20 * num_nodes;

        let mut rng: StdRng = SeedableRng::seed_from_u64(1);
        let uniform = Uniform::new(0, num_nodes);

        let mut forest = DisjointSetForest::new(num_nodes);
        b.iter(|| {
            let mut count = 0;
            while count < num_edges {
                let u = uniform.sample(&mut rng);
                let v = uniform.sample(&mut rng);
                forest.union(u, v);
                count += 1;
            }
            test::black_box(forest.num_trees());
        });
    }
}