1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Simple numerics.
//!
//! This crate contains arbitrary-sized integer, rational, and complex types.
//!
//! ## Example
//!
//! This example uses the BigRational type and [Newton's method][newt] to
//! approximate a square root to arbitrary precision:
//!
//! ```
//! extern crate num;
//!
//! use num::FromPrimitive;
//! use num::bigint::BigInt;
//! use num::rational::{Ratio, BigRational};
//!
//! fn approx_sqrt(number: u64, iterations: usize) -> BigRational {
//!     let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap());
//!     let mut approx = start.clone();
//!
//!     for _ in 0..iterations {
//!         approx = (&approx + (&start / &approx)) /
//!             Ratio::from_integer(FromPrimitive::from_u64(2).unwrap());
//!     }
//!
//!     approx
//! }
//!
//! fn main() {
//!     println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416
//! }
//! ```
//!
//! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
//#![cfg_attr(test, deny(warnings))]
#![cfg_attr(test, feature(test))]
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
       html_favicon_url = "http://www.rust-lang.org/favicon.ico",
       html_root_url = "http://doc.rust-lang.org/num/",
       html_playground_url = "http://play.rust-lang.org/")]

extern crate rustc_serialize;
extern crate rand;

pub use bigint::{BigInt, BigUint};
pub use rational::{Rational, BigRational};
pub use complex::Complex;
pub use integer::Integer;
pub use iter::{range, range_inclusive, range_step, range_step_inclusive};
pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded,
                 Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
                 PrimInt, Float, ToPrimitive, FromPrimitive, NumCast};

#[cfg(test)] use std::hash;

use std::ops::{Mul};

pub mod bigint;
pub mod complex;
pub mod integer;
pub mod iter;
pub mod traits;
pub mod rational;

/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }

/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }

/// Computes the absolute value.
///
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
    value.abs()
}

/// The positive difference of two numbers.
///
/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
/// between `x` and `y` is returned.
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
    x.abs_sub(&y)
}

/// Returns the sign of the number.
///
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For signed integers:
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }

/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use num;
///
/// assert_eq!(num::pow(2i8, 4), 16);
/// assert_eq!(num::pow(6u8, 3), 216);
/// ```
#[inline]
pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
    if exp == 1 { base }
    else {
        let mut acc = one::<T>();
        while exp > 0 {
            if (exp & 1) == 1 {
                acc = acc * base.clone();
            }

            // avoid overflow if we won't need it
            if exp > 1 {
                base = base.clone() * base;
            }
            exp = exp >> 1;
        }
        acc
    }
}

#[cfg(test)]
fn hash<T: hash::Hash>(x: &T) -> u64 {
    use std::hash::Hasher;
    let mut hasher = hash::SipHasher::new();
    x.hash(&mut hasher);
    hasher.finish()
}