1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//! A Piston event loop for games and interactive applications

#![deny(missing_docs)]
#![deny(missing_copy_implementations)]

extern crate window;
extern crate input;

extern crate spin_sleep;

use std::time::{Duration, Instant};
use std::cmp;
use window::Window;
use input::{Event, AfterRenderArgs, IdleArgs, RenderArgs, UpdateArgs};

/// Tells whether last emitted event was idle or not.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum Idle {
    No,
    Yes,
}

#[derive(Copy, Clone, Debug)]
enum State {
    Render,
    SwapBuffers,
    UpdateLoop(Idle),
    HandleEvents,
    Update,
}

/// Stores event loop settings.
#[derive(Copy, Clone, Debug)]
pub struct EventSettings {
    /// The maximum number of frames per second
    ///
    /// The frame rate can be lower because the
    /// next frame is always scheduled from the previous frame.
    /// This causes the frames to "slip" over time.
    pub max_fps: u64,
    /// The number of updates per second
    ///
    /// This is the fixed update rate on average over time.
    /// If the event loop lags, it will try to catch up.
    /// When set to `0`, update events are disabled.
    pub ups: u64,
    /// The number of delayed updates before skipping them to catch up.
    /// When set to `0`, it will always try to catch up.
    pub ups_reset: u64,
    /// Enable or disable automatic swapping of buffers.
    pub swap_buffers: bool,
    /// Enable or disable benchmark mode.
    /// When enabled, it will render and update without sleep and ignore input.
    /// Used to test performance by playing through as fast as possible.
    /// Requires `lazy` to be set to `false`.
    pub bench_mode: bool,
    /// Enable or disable rendering only when receiving input.
    /// When enabled, update and idle events are disabled.
    pub lazy: bool,
}

impl EventSettings {
    /// Creates new with default settings.
    pub fn new() -> EventSettings {
        EventSettings {
            max_fps: DEFAULT_MAX_FPS,
            ups: DEFAULT_UPS,
            swap_buffers: true,
            bench_mode: false,
            lazy: false,
            ups_reset: DEFAULT_UPS_RESET,
        }
    }
}

impl Default for EventSettings {
    fn default() -> EventSettings {
        EventSettings::new()
    }
}

/// An event loop iterator
///
/// *Warning: Because the iterator polls events from the window back-end,
/// it must be used on the same thread as the window back-end (usually main thread),
/// unless the window back-end supports multi-thread event polling.*
#[derive(Copy, Clone)]
pub struct Events {
    state: State,
    last_update: Instant,
    last_frame: Instant,
    dt_update_in_ns: u64,
    dt_frame_in_ns: u64,
    dt: f64,
    settings: EventSettings,
    first_frame: bool,
}

static BILLION: u64 = 1_000_000_000;

fn ns_to_duration(ns: u64) -> Duration {
    let secs = ns / BILLION;
    let nanos = (ns % BILLION) as u32;
    Duration::new(secs, nanos)
}

fn duration_to_secs(dur: Duration) -> f64 {
    dur.as_secs() as f64 + dur.subsec_nanos() as f64 / 1_000_000_000.0
}

/// The default updates per second.
pub const DEFAULT_UPS: u64 = 120;
/// The default delayed updates reset.
pub const DEFAULT_UPS_RESET: u64 = 2;
/// The default maximum frames per second.
pub const DEFAULT_MAX_FPS: u64 = 60;

impl Events {
    /// Creates a new event iterator with default UPS and FPS settings.
    pub fn new(settings: EventSettings) -> Events {
        let start = Instant::now();
        Events {
            state: State::Render,
            last_update: start,
            last_frame: start,
            dt_update_in_ns: if settings.ups == 0 {
                0
            } else {
                BILLION / settings.ups
            },
            dt_frame_in_ns: BILLION / settings.max_fps,
            dt: if settings.ups == 0 {
                0.0
            } else {
                1.0 / settings.ups as f64
            },
            settings: settings,
            first_frame: true,
        }
    }

    /// Returns the next event.
    pub fn next<W>(&mut self, window: &mut W) -> Option<Event>
        where W: Window
    {
        if self.settings.lazy || self.settings.ups == 0 {
            // This mode does not emit update events.
            // More commonly used in UI applications.
            if window.should_close() {
                return None;
            }
            match self.state {
                State::SwapBuffers => {
                    if self.settings.swap_buffers {
                        window.swap_buffers();
                    }
                    // This mode needs no `Render` state.
                    self.state = State::UpdateLoop(Idle::No);
                    return Some(AfterRenderArgs.into());
                }
                State::HandleEvents => {
                    if !self.settings.bench_mode {
                        // Poll input events until event queue is empty.
                        if let Some(ev) = window.poll_event() {
                            return Some(ev);
                        }
                    }
                    self.state = State::Render;
                }
                _ => {}
            }
            loop {
                // Handle input events before rendering,
                // because window might be closed and destroy
                // the graphics context.
                if let Some(e) = window.poll_event() {
                    if self.settings.bench_mode {
                        // Ignore input events in benchmark mode.
                        // This is to avoid the input events affecting
                        // the application state when benchmarking.
                        continue;
                    } else {
                        return Some(e);
                    }
                }
                if window.should_close() {
                    return None;
                }

                if !self.settings.bench_mode {
                    if self.settings.lazy {
                        // A lazy event loop always waits until next event, ignoring time to render.
                        if let State::UpdateLoop(_) = self.state {
                            // Wait for next input event.
                            let ev = window.wait_event();
                            // Handle rest of events before rendering.
                            self.state = State::HandleEvents;
                            return Some(ev);
                        }
                    } else {
                        let current_time = Instant::now();
                        let next_frame = self.last_frame + ns_to_duration(self.dt_frame_in_ns);
                        if !self.first_frame && next_frame > current_time {
                            if let State::UpdateLoop(Idle::No) = self.state {
                                // Emit idle event with time until next frame,
                                // in case the application wants to do some background work.
                                self.state = State::UpdateLoop(Idle::Yes);
                                let seconds = duration_to_secs(next_frame - current_time);
                                return Some(IdleArgs { dt: seconds }.into());
                            }
                            match window.wait_event_timeout(next_frame - current_time) {
                                None => {}
                                Some(x) => {
                                    // Handle rest of events before rendering.
                                    self.state = State::HandleEvents;
                                    return Some(x)
                                }
                            }
                        }
                    }
                }

                self.first_frame = false;

                // In normal mode, let the FPS slip if late.
                self.last_frame = Instant::now();

                let size = window.size();
                let draw_size = window.draw_size();
                if size.width != 0.0 && size.height != 0.0 {
                    // Swap buffers next time.
                    self.state = State::SwapBuffers;
                    return Some(RenderArgs {
                        ext_dt: 0.0,
                        window_size: size.into(),
                        draw_size: draw_size.into(),
                    }.into());
                } else {
                    // Can not render at this time.
                    self.state = State::UpdateLoop(Idle::No);
                }
            }
        }

        loop {
            if window.should_close() {
                return None;
            }
            self.state = match self.state {
                State::Render => {
                    // Handle input events before rendering,
                    // because window might be closed and destroy
                    // the graphics context.
                    if let Some(e) = window.poll_event() {
                        if self.settings.bench_mode {
                            // Ignore input events in benchmark mode.
                            // This is to avoid the input events affecting
                            // the application state when benchmarking.
                            continue;
                        } else {
                            return Some(e);
                        }
                    }
                    if window.should_close() {
                        return None;
                    }

                    if self.settings.bench_mode {
                        // In benchmark mode, pretend FPS is perfect.
                        self.last_frame += ns_to_duration(self.dt_frame_in_ns);
                    } else {
                        // In normal mode, let the FPS slip if late.
                        self.last_frame = Instant::now();
                    }

                    let size = window.size();
                    let draw_size = window.draw_size();
                    if size.width != 0.0 && size.height != 0.0 {
                        // Swap buffers next time.
                        self.state = State::SwapBuffers;
                        return Some(RenderArgs {
                            // Extrapolate time forward to allow smooth motion.
                            ext_dt: duration_to_secs(self.last_frame
                                .duration_since(self.last_update)),
                            window_size: size.into(),
                            draw_size: draw_size.into(),
                        }.into());
                    }

                    State::UpdateLoop(Idle::No)
                }
                State::SwapBuffers => {
                    if self.settings.swap_buffers {
                        window.swap_buffers();
                    }
                    self.state = State::UpdateLoop(Idle::No);
                    return Some(AfterRenderArgs.into());
                }
                State::UpdateLoop(ref mut idle) => {
                    if self.settings.bench_mode {
                        // In benchmark mode, pick the next event without sleep.
                        // Idle and input events are ignored.
                        // This is to avoid the input events affecting
                        // the application state when benchmarking.
                        let next_frame = self.last_frame + ns_to_duration(self.dt_frame_in_ns);
                        let next_update = self.last_update + ns_to_duration(self.dt_update_in_ns);
                        let next_event = cmp::min(next_frame, next_update);
                        if next_event == next_frame {
                            State::Render
                        } else {
                            State::HandleEvents
                        }
                    } else {
                        let current_time = Instant::now();
                        let next_frame = self.last_frame + ns_to_duration(self.dt_frame_in_ns);
                        let next_update = self.last_update + ns_to_duration(self.dt_update_in_ns);
                        let next_event = cmp::min(next_frame, next_update);
                        if next_event > current_time {
                            if let Some(x) = window.poll_event() {
                                *idle = Idle::No;
                                return Some(x);
                            } else if *idle == Idle::No {
                                *idle = Idle::Yes;
                                let seconds = duration_to_secs(next_event - current_time);
                                return Some(IdleArgs { dt: seconds }.into());
                            }
                            spin_sleep::sleep(next_event - current_time);
                            State::UpdateLoop(Idle::No)
                        } else if next_event == next_frame {
                            State::Render
                        } else {
                            State::HandleEvents
                        }
                    }
                }
                State::HandleEvents => {
                    if self.settings.bench_mode {
                        // Ignore input events.
                        // This is to avoid the input events affecting
                        // the application state when benchmarking.
                        match window.poll_event() {
                            None => State::Update,
                            Some(_) => State::HandleEvents,
                        }
                    } else {
                        // Handle all events before updating.
                        match window.poll_event() {
                            None => State::Update,
                            x => return x,
                        }
                    }
                }
                State::Update => {
                    self.state = State::UpdateLoop(Idle::No);
                    if !self.settings.bench_mode && self.settings.ups_reset > 0 &&
                       Instant::now() - self.last_update >
                       ns_to_duration(self.settings.ups_reset * self.dt_update_in_ns) {
                        // Skip updates because CPU is too busy.
                        self.last_update = Instant::now();
                    } else {
                        // Use the update state stored right after sleep.
                        self.last_update += ns_to_duration(self.dt_update_in_ns);
                    }
                    return Some(UpdateArgs { dt: self.dt }.into());
                }
            };
        }
    }
}

/// Methods implemented for changing event loop settings.
pub trait EventLoop: Sized {
    /// Returns event loop settings.
    fn get_event_settings(&self) -> EventSettings;
    /// Sets event loop settings.
    fn set_event_settings(&mut self, settings: EventSettings);

    /// The number of updates per second
    ///
    /// This is the fixed update rate on average over time.
    /// If the event loop lags, it will try to catch up.
    /// When set to `0`, update events are disabled.
    fn set_ups(&mut self, frames: u64) {
        let old_settings = self.get_event_settings();
        self.set_event_settings(EventSettings { ups: frames, ..old_settings });
    }

    /// The number of updates per second
    ///
    /// This is the fixed update rate on average over time.
    /// If the event loop lags, it will try to catch up.
    /// When set to `0`, update events are disabled.
    fn ups(mut self, frames: u64) -> Self {
        self.set_ups(frames);
        self
    }

    /// The number of delayed updates before skipping them to catch up.
    /// When set to `0`, it will always try to catch up.
    fn set_ups_reset(&mut self, frames: u64) {
        let old_settings = self.get_event_settings();
        self.set_event_settings(EventSettings { ups_reset: frames, ..old_settings });
    }

    /// The number of delayed updates before skipping them to catch up.
    /// When set to `0`, it will always try to catch up.
    fn ups_reset(mut self, frames: u64) -> Self {
        self.set_ups_reset(frames);
        self
    }

    /// The maximum number of frames per second
    ///
    /// The frame rate can be lower because the
    /// next frame is always scheduled from the previous frame.
    /// This causes the frames to "slip" over time.
    fn set_max_fps(&mut self, frames: u64) {
        let old_settings = self.get_event_settings();
        self.set_event_settings(EventSettings { max_fps: frames, ..old_settings })
    }

    /// The maximum number of frames per second
    ///
    /// The frame rate can be lower because the
    /// next frame is always scheduled from the previous frame.
    /// This causes the frames to "slip" over time.
    fn max_fps(mut self, frames: u64) -> Self {
        self.set_max_fps(frames);
        self
    }

    /// Enable or disable automatic swapping of buffers.
    fn set_swap_buffers(&mut self, enable: bool) {
        let old_settings = self.get_event_settings();
        self.set_event_settings(EventSettings { swap_buffers: enable, ..old_settings })
    }

    /// Enable or disable automatic swapping of buffers.
    fn swap_buffers(mut self, enable: bool) -> Self {
        self.set_swap_buffers(enable);
        self
    }

    /// Enable or disable benchmark mode.
    /// When enabled, it will render and update without sleep and ignore input.
    /// Used to test performance by playing through as fast as possible.
    /// Requires `lazy` to be set to `false`.
    fn set_bench_mode(&mut self, enable: bool) {
        let old_settings = self.get_event_settings();
        self.set_event_settings(EventSettings { bench_mode: enable, ..old_settings })
    }

    /// Enable or disable benchmark mode.
    /// When enabled, it will render and update without sleep and ignore input.
    /// Used to test performance by playing through as fast as possible.
    /// Requires `lazy` to be set to `false`.
    fn bench_mode(mut self, enable: bool) -> Self {
        self.set_bench_mode(enable);
        self
    }

    /// Enable or disable rendering only when receiving input.
    /// When enabled, update events are disabled.
    /// Idle events are emitted while receiving input.
    fn set_lazy(&mut self, enable: bool) {
        let old_settings = self.get_event_settings();
        self.set_event_settings(EventSettings { lazy: enable, ..old_settings })
    }

    /// Enable or disable rendering only when receiving input.
    /// When enabled, update events are disabled.
    /// Idle events are emitted while receiving input.
    fn lazy(mut self, enable: bool) -> Self {
        self.set_lazy(enable);
        self
    }
}

impl EventLoop for EventSettings {
    fn get_event_settings(&self) -> Self {
        *self
    }
    fn set_event_settings(&mut self, settings: Self) {
        *self = settings;
    }
}

impl EventLoop for Events {
    fn get_event_settings(&self) -> EventSettings {
        self.settings
    }
    fn set_event_settings(&mut self, settings: EventSettings) {
        // Reset event loop to initial state.
        *self = Events::new(settings);
    }
}