1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
//! Choice combinators

#[macro_use]
mod macros;

use crate::error::ErrorKind;
use crate::error::ParseError;
use crate::internal::{Err, IResult, Parser};

/// Helper trait for the [alt()] combinator.
///
/// This trait is implemented for tuples of up to 21 elements
pub trait Alt<I, O, E> {
  /// Tests each parser in the tuple and returns the result of the first one that succeeds
  fn choice(&mut self, input: I) -> IResult<I, O, E>;
}

/// Tests a list of parsers one by one until one succeeds.
///
/// It takes as argument a tuple of parsers. There is a maximum of 21
/// parsers. If you need more, it is possible to nest them in other `alt` calls,
/// like this: `alt(parser_a, alt(parser_b, parser_c))`
///
/// ```rust
/// # #[macro_use] extern crate nom;
/// # use nom::{Err,error::ErrorKind, Needed, IResult};
/// use nom::character::complete::{alpha1, digit1};
/// use nom::branch::alt;
/// # fn main() {
/// fn parser(input: &str) -> IResult<&str, &str> {
///   alt((alpha1, digit1))(input)
/// };
///
/// // the first parser, alpha1, recognizes the input
/// assert_eq!(parser("abc"), Ok(("", "abc")));
///
/// // the first parser returns an error, so alt tries the second one
/// assert_eq!(parser("123456"), Ok(("", "123456")));
///
/// // both parsers failed, and with the default error type, alt will return the last error
/// assert_eq!(parser(" "), Err(Err::Error(error_position!(" ", ErrorKind::Digit))));
/// # }
/// ```
///
/// With a custom error type, it is possible to have alt return the error of the parser
/// that went the farthest in the input data
pub fn alt<I: Clone, O, E: ParseError<I>, List: Alt<I, O, E>>(
  mut l: List,
) -> impl FnMut(I) -> IResult<I, O, E> {
  move |i: I| l.choice(i)
}

/// Helper trait for the [permutation()] combinator.
///
/// This trait is implemented for tuples of up to 21 elements
pub trait Permutation<I, O, E> {
  /// Tries to apply all parsers in the tuple in various orders until all of them succeed
  fn permutation(&mut self, input: I) -> IResult<I, O, E>;
}

/// Applies a list of parsers in any order.
///
/// Permutation will succeed if all of the child parsers succeeded.
/// It takes as argument a tuple of parsers, and returns a
/// tuple of the parser results.
///
/// ```rust
/// # #[macro_use] extern crate nom;
/// # use nom::{Err,error::{Error, ErrorKind}, Needed, IResult};
/// use nom::character::complete::{alpha1, digit1};
/// use nom::branch::permutation;
/// # fn main() {
/// fn parser(input: &str) -> IResult<&str, (&str, &str)> {
///   permutation((alpha1, digit1))(input)
/// }
///
/// // permutation recognizes alphabetic characters then digit
/// assert_eq!(parser("abc123"), Ok(("", ("abc", "123"))));
///
/// // but also in inverse order
/// assert_eq!(parser("123abc"), Ok(("", ("abc", "123"))));
///
/// // it will fail if one of the parsers failed
/// assert_eq!(parser("abc;"), Err(Err::Error(Error::new(";", ErrorKind::Digit))));
/// # }
/// ```
///
/// The parsers are applied greedily: if there are multiple unapplied parsers
/// that could parse the next slice of input, the first one is used.
/// ```rust
/// # use nom::{Err, error::{Error, ErrorKind}, IResult};
/// use nom::branch::permutation;
/// use nom::character::complete::{anychar, char};
///
/// fn parser(input: &str) -> IResult<&str, (char, char)> {
///   permutation((anychar, char('a')))(input)
/// }
///
/// // anychar parses 'b', then char('a') parses 'a'
/// assert_eq!(parser("ba"), Ok(("", ('b', 'a'))));
///
/// // anychar parses 'a', then char('a') fails on 'b',
/// // even though char('a') followed by anychar would succeed
/// assert_eq!(parser("ab"), Err(Err::Error(Error::new("b", ErrorKind::Char))));
/// ```
///
pub fn permutation<I: Clone, O, E: ParseError<I>, List: Permutation<I, O, E>>(
  mut l: List,
) -> impl FnMut(I) -> IResult<I, O, E> {
  move |i: I| l.permutation(i)
}

macro_rules! alt_trait(
  ($first:ident $second:ident $($id: ident)+) => (
    alt_trait!(__impl $first $second; $($id)+);
  );
  (__impl $($current:ident)*; $head:ident $($id: ident)+) => (
    alt_trait_impl!($($current)*);

    alt_trait!(__impl $($current)* $head; $($id)+);
  );
  (__impl $($current:ident)*; $head:ident) => (
    alt_trait_impl!($($current)*);
    alt_trait_impl!($($current)* $head);
  );
);

macro_rules! alt_trait_impl(
  ($($id:ident)+) => (
    impl<
      Input: Clone, Output, Error: ParseError<Input>,
      $($id: Parser<Input, Output, Error>),+
    > Alt<Input, Output, Error> for ( $($id),+ ) {

      fn choice(&mut self, input: Input) -> IResult<Input, Output, Error> {
        match self.0.parse(input.clone()) {
          Err(Err::Error(e)) => alt_trait_inner!(1, self, input, e, $($id)+),
          res => res,
        }
      }
    }
  );
);

macro_rules! alt_trait_inner(
  ($it:tt, $self:expr, $input:expr, $err:expr, $head:ident $($id:ident)+) => (
    match $self.$it.parse($input.clone()) {
      Err(Err::Error(e)) => {
        let err = $err.or(e);
        succ!($it, alt_trait_inner!($self, $input, err, $($id)+))
      }
      res => res,
    }
  );
  ($it:tt, $self:expr, $input:expr, $err:expr, $head:ident) => (
    Err(Err::Error(Error::append($input, ErrorKind::Alt, $err)))
  );
);

alt_trait!(A B C D E F G H I J K L M N O P Q R S T U);

macro_rules! permutation_trait(
  (
    $name1:ident $ty1:ident $item1:ident
    $name2:ident $ty2:ident $item2:ident
    $($name3:ident $ty3:ident $item3:ident)*
  ) => (
    permutation_trait!(__impl $name1 $ty1 $item1, $name2 $ty2 $item2; $($name3 $ty3 $item3)*);
  );
  (
    __impl $($name:ident $ty:ident $item:ident),+;
    $name1:ident $ty1:ident $item1:ident $($name2:ident $ty2:ident $item2:ident)*
  ) => (
    permutation_trait_impl!($($name $ty $item),+);
    permutation_trait!(__impl $($name $ty $item),+ , $name1 $ty1 $item1; $($name2 $ty2 $item2)*);
  );
  (__impl $($name:ident $ty:ident $item:ident),+;) => (
    permutation_trait_impl!($($name $ty $item),+);
  );
);

macro_rules! permutation_trait_impl(
  ($($name:ident $ty:ident $item:ident),+) => (
    impl<
      Input: Clone, $($ty),+ , Error: ParseError<Input>,
      $($name: Parser<Input, $ty, Error>),+
    > Permutation<Input, ( $($ty),+ ), Error> for ( $($name),+ ) {

      fn permutation(&mut self, mut input: Input) -> IResult<Input, ( $($ty),+ ), Error> {
        let mut res = ($(Option::<$ty>::None),+);

        loop {
          let mut err: Option<Error> = None;
          permutation_trait_inner!(0, self, input, res, err, $($name)+);

          // If we reach here, every iterator has either been applied before,
          // or errored on the remaining input
          if let Some(err) = err {
            // There are remaining parsers, and all errored on the remaining input
            return Err(Err::Error(Error::append(input, ErrorKind::Permutation, err)));
          }

          // All parsers were applied
          match res {
            ($(Some($item)),+) => return Ok((input, ($($item),+))),
            _ => unreachable!(),
          }
        }
      }
    }
  );
);

macro_rules! permutation_trait_inner(
  ($it:tt, $self:expr, $input:ident, $res:expr, $err:expr, $head:ident $($id:ident)*) => (
    if $res.$it.is_none() {
      match $self.$it.parse($input.clone()) {
        Ok((i, o)) => {
          $input = i;
          $res.$it = Some(o);
          continue;
        }
        Err(Err::Error(e)) => {
          $err = Some(match $err {
            Some(err) => err.or(e),
            None => e,
          });
        }
        Err(e) => return Err(e),
      };
    }
    succ!($it, permutation_trait_inner!($self, $input, $res, $err, $($id)*));
  );
  ($it:tt, $self:expr, $input:ident, $res:expr, $err:expr,) => ();
);

permutation_trait!(
  FnA A a
  FnB B b
  FnC C c
  FnD D d
  FnE E e
  FnF F f
  FnG G g
  FnH H h
  FnI I i
  FnJ J j
  FnK K k
  FnL L l
  FnM M m
  FnN N n
  FnO O o
  FnP P p
  FnQ Q q
  FnR R r
  FnS S s
  FnT T t
  FnU U u
);