1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
//! Simple resampling library in pure Rust.
//!
//! # Examples
//!
//! ```
//! use resize::Pixel::RGB8;
//! use resize::Type::Lanczos3;
//! use rgb::RGB8;
//! use rgb::FromSlice;
//!
//! // Downscale by 2x.
//! let (w1, h1) = (640, 480);
//! let (w2, h2) = (320, 240);
//! // Don't forget to fill `src` with image data (RGB8).
//! let src = vec![0;w1*h1*3];
//! // Destination buffer. Must be mutable.
//! let mut dst = vec![0;w2*h2*3];
//! // Create reusable instance.
//! let mut resizer = resize::new(w1, h1, w2, h2, RGB8, Lanczos3)?;
//! // Do resize without heap allocations.
//! // Might be executed multiple times for different `src` or `dst`.
//! resizer.resize(src.as_rgb(), dst.as_rgb_mut());
//! # Ok::<_, resize::Error>(())
//! ```
// Current implementation is based on:
// * https://github.com/sekrit-twc/zimg/tree/master/src/zimg/resize
// * https://github.com/PistonDevelopers/image/blob/master/src/imageops/sample.rs
#![deny(missing_docs)]

use fallible_collections::FallibleVec;
use std::sync::Arc;
use fallible_collections::TryHashMap;
use std::f32;
use std::fmt;
use std::num::NonZeroUsize;

/// See [Error]
pub type Result<T, E = Error> = std::result::Result<T, E>;

/// Pixel format from the [rgb] crate.
pub mod px;
pub use px::PixelFormat;

/// Resizing type to use.
pub enum Type {
    /// Point resizing.
    Point,
    /// Triangle (bilinear) resizing.
    Triangle,
    /// Catmull-Rom (bicubic) resizing.
    Catrom,
    /// Resize using Mitchell-Netravali filter.
    Mitchell,
    /// Resize using Sinc-windowed Sinc with radius of 3.
    Lanczos3,
    /// Resize with custom filter.
    Custom(Filter),
}

/// Resampling filter.
pub struct Filter {
    kernel: Box<dyn Fn(f32) -> f32>,
    support: f32,
}

impl Filter {
    /// Create a new filter.
    ///
    /// # Examples
    ///
    /// ```
    /// use resize::Filter;
    /// fn kernel(x: f32) -> f32 { f32::max(1.0 - x.abs(), 0.0) }
    /// let filter = Filter::new(Box::new(kernel), 1.0);
    /// ```
    #[must_use]
    #[inline(always)]
    pub fn new(kernel: Box<dyn Fn(f32) -> f32>, support: f32) -> Self {
        Self { kernel, support }
    }

    /// Helper to create Cubic filter with custom B and C parameters.
    #[must_use]
    #[deprecated(note = "use Type enum")]
    pub fn new_cubic(b: f32, c: f32) -> Self {
        Self::new(Box::new(move |x| cubic_bc(b, c, x)), 2.0)
    }

    /// Helper to create Lanczos filter with custom radius.
    #[must_use]
    #[deprecated(note = "use Type enum")]
    pub fn new_lanczos(radius: f32) -> Self {
        Self::new(Box::new(move |x| lanczos(radius, x)), radius)
    }
}

#[inline]
fn point_kernel(_: f32) -> f32 {
    1.0
}

#[inline]
fn triangle_kernel(x: f32) -> f32 {
    f32::max(1.0 - x.abs(), 0.0)
}

// Taken from
// https://github.com/PistonDevelopers/image/blob/2921cd7/src/imageops/sample.rs#L68
// TODO(Kagami): Could be optimized for known B and C, see e.g.
// https://github.com/sekrit-twc/zimg/blob/1a606c0/src/zimg/resize/filter.cpp#L149
#[inline(always)]
fn cubic_bc(b: f32, c: f32, x: f32) -> f32 {
    let a = x.abs();
    let k = if a < 1.0 {
        (12.0 - 9.0 * b - 6.0 * c) * a.powi(3) +
        (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2) +
        (6.0 - 2.0 * b)
    } else if a < 2.0 {
        (-b - 6.0 * c) * a.powi(3) +
        (6.0 * b + 30.0 * c) * a.powi(2) +
        (-12.0 * b - 48.0 * c) * a +
        (8.0 * b + 24.0 * c)
    } else {
        0.0
    };
    k / 6.0
}

#[inline]
fn sinc(x: f32) -> f32 {
    if x == 0.0 {
        1.0
    } else {
        let a = x * f32::consts::PI;
        a.sin() / a
    }
}

#[inline(always)]
fn lanczos(taps: f32, x: f32) -> f32 {
    if x.abs() < taps {
        sinc(x) * sinc(x / taps)
    } else {
        0.0
    }
}

/// Predefined constants for supported pixel formats.
#[allow(non_snake_case)]
#[allow(non_upper_case_globals)]
pub mod Pixel {
    use std::marker::PhantomData;
    use crate::formats;

    /// Grayscale, 8-bit.
    #[cfg_attr(docsrs, doc(alias = "Grey"))]
    pub const Gray8: formats::Gray<u8, u8> = formats::Gray(PhantomData);
    /// Grayscale, 16-bit, native endian.
    pub const Gray16: formats::Gray<u16, u16> = formats::Gray(PhantomData);

    /// Grayscale, 32-bit float
    pub const GrayF32: formats::Gray<f32, f32> = formats::Gray(PhantomData);
    /// Grayscale, 64-bit float
    pub const GrayF64: formats::Gray<f64, f64> = formats::Gray(PhantomData);

    /// RGB, 8-bit per component.
    #[cfg_attr(docsrs, doc(alias = "RGB24"))]
    pub const RGB8: formats::Rgb<u8, u8> = formats::Rgb(PhantomData);
    /// RGB, 16-bit per component, native endian.
    #[cfg_attr(docsrs, doc(alias = "RGB48"))]
    pub const RGB16: formats::Rgb<u16, u16> = formats::Rgb(PhantomData);
    /// RGBA, 8-bit per component. Components are scaled independently. Use this if the input is already alpha-premultiplied.
    ///
    /// Preserves RGB values of fully-transparent pixels. Expect halos around edges of transparency if using regular, uncorrelated RGBA. See [RGBA8P].
    #[cfg_attr(docsrs, doc(alias = "RGBA32"))]
    pub const RGBA8: formats::Rgba<u8, u8> = formats::Rgba(PhantomData);
    /// RGBA, 16-bit per component, native endian. Components are scaled independently. Use this if the input is already alpha-premultiplied.
    ///
    /// Preserves RGB values of fully-transparent pixels. Expect halos around edges of transparency if using regular, uncorrelated RGBA. See [RGBA16P].
    #[cfg_attr(docsrs, doc(alias = "RGBA64"))]
    pub const RGBA16: formats::Rgba<u16, u16> = formats::Rgba(PhantomData);
    /// RGBA, 8-bit per component. RGB components will be converted to premultiplied during scaling, and then converted back to uncorrelated.
    ///
    /// Clears "dirty alpha". Use this for high-quality scaling of regular uncorrelated (not premultiplied) RGBA bitmaps.
    #[cfg_attr(docsrs, doc(alias = "premultiplied"))]
    #[cfg_attr(docsrs, doc(alias = "prem"))]
    pub const RGBA8P: formats::RgbaPremultiply<u8, u8> = formats::RgbaPremultiply(PhantomData);
    /// RGBA, 16-bit per component, native endian. RGB components will be converted to premultiplied during scaling, and then converted back to uncorrelated.
    ///
    /// Clears "dirty alpha". Use this for high-quality scaling of regular uncorrelated (not premultiplied) RGBA bitmaps.
    pub const RGBA16P: formats::RgbaPremultiply<u16, u16> = formats::RgbaPremultiply(PhantomData);

    /// RGB, 32-bit float per component. This is pretty efficient, since resizing uses f32 internally.
    pub const RGBF32: formats::Rgb<f32, f32> = formats::Rgb(PhantomData);
    /// RGB, 64-bit double per component.
    pub const RGBF64: formats::Rgb<f64, f64> = formats::Rgb(PhantomData);

    /// RGBA, 32-bit float per component. This is pretty efficient, since resizing uses f32 internally.
    ///
    /// Components are scaled independently (no premultiplication applied)
    pub const RGBAF32: formats::Rgba<f32, f32> = formats::Rgba(PhantomData);
    /// RGBA, 64-bit double per component.
    ///
    /// Components are scaled independently (no premultiplication applied)
    pub const RGBAF64: formats::Rgba<f64, f64> = formats::Rgba(PhantomData);
}

/// Implementation detail
///
/// These structs implement `PixelFormat` trait that allows conversion to and from internal pixel representation.
#[doc(hidden)]
pub mod formats {
    use std::marker::PhantomData;
    /// RGB pixels
    #[derive(Debug, Copy, Clone)]
    pub struct Rgb<InputSubpixel, OutputSubpixel>(pub(crate) PhantomData<(InputSubpixel, OutputSubpixel)>);
    /// RGBA pixels, each channel is independent. Compatible with premultiplied input/output.
    #[derive(Debug, Copy, Clone)]
    pub struct Rgba<InputSubpixel, OutputSubpixel>(pub(crate) PhantomData<(InputSubpixel, OutputSubpixel)>);
    /// Apply premultiplication to RGBA pixels during scaling. Assumes **non**-premultiplied input/output.
    #[derive(Debug, Copy, Clone)]
    pub struct RgbaPremultiply<InputSubpixel, OutputSubpixel>(pub(crate) PhantomData<(InputSubpixel, OutputSubpixel)>);
    /// Grayscale pixels
    #[derive(Debug, Copy, Clone)]
    pub struct Gray<InputSubpixel, OutputSubpixel>(pub(crate) PhantomData<(InputSubpixel, OutputSubpixel)>);
}

/// Resampler with preallocated buffers and coeffecients for the given
/// dimensions and filter type.
#[derive(Debug)]
pub struct Resizer<Format: PixelFormat> {
    scale: Scale,
    pix_fmt: Format,
    // Temporary/preallocated stuff.
    tmp: Vec<Format::Accumulator>,
}

#[derive(Debug)]
struct Scale {
    /// Source dimensions.
    w1: NonZeroUsize,
    h1: NonZeroUsize,
    /// Vec's len == target dimensions
    coeffs_w: Vec<CoeffsLine>,
    coeffs_h: Vec<CoeffsLine>,
}

impl Scale {
    #[inline(always)]
    fn w2(&self) -> usize {
        self.coeffs_w.len()
    }

    #[inline(always)]
    fn h2(&self) -> usize {
        self.coeffs_h.len()
    }
}

#[derive(Debug, Clone)]
struct CoeffsLine {
    start: usize,
    coeffs: Arc<[f32]>,
}

type DynCallback<'a> = &'a dyn Fn(f32) -> f32;

impl Scale {
    pub fn new(source_width: usize, source_heigth: usize, dest_width: usize, dest_height: usize, filter_type: Type) -> Result<Self> {
        let source_width = NonZeroUsize::new(source_width).ok_or(Error::InvalidParameters)?;
        let source_heigth = NonZeroUsize::new(source_heigth).ok_or(Error::InvalidParameters)?;
        if dest_width == 0 || dest_height == 0 {
            return Err(Error::InvalidParameters);
        }
        let filter = match filter_type {
            Type::Point => (&point_kernel as DynCallback, 0.0_f32),
            Type::Triangle => (&triangle_kernel as DynCallback, 1.0),
            Type::Catrom => ((&|x| cubic_bc(0.0, 0.5, x)) as DynCallback, 2.0),
            Type::Mitchell => ((&|x| cubic_bc(1.0/3.0, 1.0/3.0, x)) as DynCallback, 2.0),
            Type::Lanczos3 => ((&|x| lanczos(3.0, x)) as DynCallback, 3.0),
            Type::Custom(ref f) => (&f.kernel as DynCallback, f.support),
        };

        // filters very often create repeating patterns,
        // so overall memory used by them can be reduced
        // which should save some cache space
        let mut recycled_coeffs = TryHashMap::with_capacity(dest_width.max(dest_height))?;

        let coeffs_w = Self::calc_coeffs(source_width, dest_width, filter, &mut recycled_coeffs)?;
        let coeffs_h = if source_heigth == source_width && dest_height == dest_width {
            coeffs_w.clone()
        } else {
            Self::calc_coeffs(source_heigth, dest_height, filter, &mut recycled_coeffs)?
        };

        Ok(Self {
            w1: source_width,
            h1: source_heigth,
            coeffs_w,
            coeffs_h,
        })
    }

    fn calc_coeffs(s1: NonZeroUsize, s2: usize, (kernel, support): (&dyn Fn(f32) -> f32, f32), recycled_coeffs: &mut TryHashMap<(usize, [u8; 4], [u8; 4]), Arc<[f32]>>) -> Result<Vec<CoeffsLine>> {
        let ratio = s1.get() as f64 / s2 as f64;
        // Scale the filter when downsampling.
        let filter_scale = ratio.max(1.);
        let filter_radius = (support as f64 * filter_scale).ceil();
        let mut res = Vec::try_with_capacity(s2)?;
        for x2 in 0..s2 {
            let x1 = (x2 as f64 + 0.5) * ratio - 0.5;
            let start = (x1 - filter_radius).ceil() as isize;
            let start = start.min(s1.get() as isize - 1).max(0) as usize;
            let end = (x1 + filter_radius).floor() as isize;
            let end = (end.min(s1.get() as isize - 1).max(0) as usize).max(start);
            let sum: f64 = (start..=end).map(|i| (kernel)(((i as f64 - x1) / filter_scale) as f32) as f64).sum();
            let key = (end - start, (filter_scale as f32).to_ne_bytes(), (start as f32 - x1 as f32).to_ne_bytes());
            let coeffs = if let Some(k) = recycled_coeffs.get(&key) { k.clone() } else {
                let tmp = (start..=end).map(|i| {
                    let n = ((i as f64 - x1) / filter_scale) as f32;
                    ((kernel)(n.min(support).max(-support)) as f64 / sum) as f32
                }).collect::<Arc<[_]>>();
                recycled_coeffs.insert(key, tmp.clone())?;
                tmp
            };
            res.push(CoeffsLine { start, coeffs });
        }
        Ok(res)
    }
}

impl<Format: PixelFormat> Resizer<Format> {
    /// Create a new resizer instance.
    #[inline]
    pub fn new(source_width: usize, source_heigth: usize, dest_width: usize, dest_height: usize, pixel_format: Format, filter_type: Type) -> Result<Self> {
        Ok(Self {
            scale: Scale::new(source_width, source_heigth, dest_width, dest_height, filter_type)?,
            tmp: Vec::new(),
            pix_fmt: pixel_format,
        })
    }

    /// Stride is a length of the source row (>= W1)
    fn resample_both_axes(&mut self, src: &[Format::InputPixel], stride: NonZeroUsize, mut dst: &mut [Format::OutputPixel]) -> Result<()> {
        self.tmp.clear();
        FallibleVec::try_reserve(&mut self.tmp, self.scale.w2() * self.scale.h1.get())?;

        // Outer loop resamples W2xH1 to W2xH2
        let mut src_rows = src.chunks(stride.get());
        for row in &self.scale.coeffs_h {
            let w2 = self.scale.w2();

            // Inner loop resamples W1xH1 to W2xH1,
            // but only as many rows as necessary to write a new line
            // to the output
            while self.tmp.len() < w2 * (row.start + row.coeffs.len()) {
                let row = src_rows.next().unwrap();
                let pix_fmt = &self.pix_fmt;
                self.tmp.extend(self.scale.coeffs_w.iter().map(|col| {
                    let mut accum = Format::new();
                    let in_px = &row[col.start..col.start + col.coeffs.len()];
                    for (coeff, in_px) in col.coeffs.iter().copied().zip(in_px.iter().copied()) {
                        pix_fmt.add(&mut accum, in_px, coeff)
                    }
                    accum
                }));
            }

            let tmp_rows = &self.tmp[w2 * row.start..];
            for (col, dst_px) in dst[0..w2].iter_mut().enumerate() {
                let mut accum = Format::new();
                for (coeff, other_row) in row.coeffs.iter().copied().zip(tmp_rows.chunks_exact(w2)) {
                    Format::add_acc(&mut accum, other_row[col], coeff);
                }
                *dst_px = self.pix_fmt.into_pixel(accum);
            }
            dst = &mut dst[w2..];
        }
        Ok(())
    }

    /// Resize `src` image data into `dst`.
    #[inline]
    pub(crate) fn resize_internal(&mut self, src: &[Format::InputPixel], src_stride: NonZeroUsize, dst: &mut [Format::OutputPixel]) -> Result<()> {
        // TODO(Kagami):
        // * Multi-thread
        // * SIMD
        if self.scale.w1.get() > src_stride.get() ||
            src.len() < (src_stride.get() * self.scale.h1.get()) + self.scale.w1.get() - src_stride.get() ||
            dst.len() != self.scale.w2() * self.scale.h2() {
                return Err(Error::InvalidParameters)
            }
        self.resample_both_axes(src, src_stride, dst)
    }
}

impl<Format: PixelFormat> Resizer<Format> {
    /// Resize `src` image data into `dst`.
    #[inline]
    pub fn resize(&mut self, src: &[Format::InputPixel], dst: &mut [Format::OutputPixel]) -> Result<()> {
        self.resize_internal(src, self.scale.w1, dst)
    }

    /// Resize `src` image data into `dst`, skipping `stride` pixels each row.
    #[inline]
    pub fn resize_stride(&mut self, src: &[Format::InputPixel], src_stride: usize, dst: &mut [Format::OutputPixel]) -> Result<()> {
        let src_stride = NonZeroUsize::new(src_stride).ok_or(Error::InvalidParameters)?;
        self.resize_internal(src, src_stride, dst)
    }
}

/// Create a new resizer instance. Alias for `Resizer::new`.
#[inline(always)]
pub fn new<Format: PixelFormat>(src_width: usize, src_height: usize, dest_width: usize, dest_height: usize, pixel_format: Format, filter_type: Type) -> Result<Resizer<Format>> {
    Resizer::new(src_width, src_height, dest_width, dest_height, pixel_format, filter_type)
}

/// Use `new().resize()` instead.
///
/// Resize image data to the new dimension in a single step.
///
/// **NOTE:** If you need to resize to the same dimension multiple times,
/// consider creating an resizer instance since it's faster.
#[deprecated(note="Use resize::new().resize()")]
#[allow(deprecated)]
pub fn resize<Format: PixelFormat>(
    src_width: usize, src_height: usize, dest_width: usize, dest_height: usize,
    pixel_format: Format, filter_type: Type,
    src: &[Format::InputPixel], dst: &mut [Format::OutputPixel],
) -> Result<()> {
    Resizer::<Format>::new(src_width, src_height, dest_width, dest_height, pixel_format, filter_type)?.resize(src, dst)
}

/// Resizing may run out of memory
#[derive(Debug)]
pub enum Error {
    /// Allocation failed
    OutOfMemory,
    /// e.g. width or height can't be 0
    InvalidParameters,
}

impl std::error::Error for Error {}

impl From<fallible_collections::TryReserveError> for Error {
    #[inline(always)]
    fn from(_: fallible_collections::TryReserveError) -> Self {
        Self::OutOfMemory
    }
}

impl fmt::Display for Error {
    #[cold]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(match self {
            Self::OutOfMemory => "out of memory",
            Self::InvalidParameters => "invalid parameters"
        })
    }
}

#[test]
fn oom() {
    let _ = new(2, 2, isize::max_value() as _, isize::max_value() as _, Pixel::Gray16, Type::Triangle);
}

#[test]
fn niche() {
    assert_eq!(std::mem::size_of::<Resizer<formats::Gray<f32, f32>>>(), std::mem::size_of::<Option<Resizer<formats::Gray<f32, f32>>>>());
}

#[test]
fn zeros() {
    assert!(new(1, 1, 1, 0, Pixel::Gray16, Type::Triangle).is_err());
    assert!(new(1, 1, 0, 1, Pixel::Gray8, Type::Catrom).is_err());
    assert!(new(1, 0, 1, 1, Pixel::RGBAF32, Type::Lanczos3).is_err());
    assert!(new(0, 1, 1, 1, Pixel::RGB8, Type::Mitchell).is_err());
}

#[test]
fn premultiply() {
    use px::RGBA;
    let mut r = new(2, 2, 3, 4, Pixel::RGBA8P, Type::Triangle).unwrap();
    let mut dst = vec![RGBA::new(0u8,0,0,0u8); 12];
    r.resize(&[
        RGBA::new(255,127,3,255), RGBA::new(0,0,0,0),
        RGBA::new(255,255,255,0), RGBA::new(0,255,255,0),
    ], &mut dst).unwrap();
    assert_eq!(&dst, &[
        RGBA { r: 255, g: 127, b: 3, a: 255 }, RGBA { r: 255, g: 127, b: 3, a: 128 }, RGBA { r: 0, g: 0, b: 0, a: 0 },
        RGBA { r: 255, g: 127, b: 3, a: 191 }, RGBA { r: 255, g: 127, b: 3, a: 96 }, RGBA { r: 0, g: 0, b: 0, a: 0 },
        RGBA { r: 255, g: 127, b: 3, a: 64 }, RGBA { r: 255, g: 127, b: 3, a: 32 }, RGBA { r: 0, g: 0, b: 0, a: 0 },
        RGBA { r: 0, g: 0, b: 0, a: 0 }, RGBA { r: 0, g: 0, b: 0, a: 0 }, RGBA { r: 0, g: 0, b: 0, a: 0 }
    ]);
}

#[test]
fn premultiply_solid() {
    use px::RGBA;
    let mut r = new(2, 2, 3, 4, Pixel::RGBA8P, Type::Triangle).unwrap();
    let mut dst = vec![RGBA::new(0u8,0,0,0u8); 12];
    r.resize(&[
        RGBA::new(255,255,255,255), RGBA::new(0,0,0,255),
        RGBA::new(0,0,0,255), RGBA::new(0,0,0,255),
    ], &mut dst).unwrap();
    assert_eq!(&dst, &[
        RGBA { r: 255, g: 255, b: 255, a: 255 }, RGBA { r: 128, g: 128, b: 128, a: 255 }, RGBA { r: 0, g: 0, b: 0, a: 255 },
        RGBA { r: 191, g: 191, b: 191, a: 255 }, RGBA { r: 96, g: 96, b: 96, a: 255 }, RGBA { r: 0, g: 0, b: 0, a: 255 },
        RGBA { r: 64, g: 64, b: 64, a: 255 }, RGBA { r: 32, g: 32, b: 32, a: 255 }, RGBA { r: 0, g: 0, b: 0, a: 255 },
        RGBA { r: 0, g: 0, b: 0, a: 255 }, RGBA { r: 0, g: 0, b: 0, a: 255 }, RGBA { r: 0, g: 0, b: 0, a: 255 },
    ]);
}

#[test]
fn resize_stride() {
    use rgb::FromSlice;

    let mut r = new(2, 2, 3, 4, Pixel::Gray16, Type::Triangle).unwrap();
    let mut dst = vec![0; 12];
    r.resize_stride(&[
        65535,65535,1,2,
        65535,65535,3,4,
    ].as_gray(), 4, dst.as_gray_mut()).unwrap();
    assert_eq!(&dst, &[65535; 12]);
}

#[test]
fn resize_float() {
    use rgb::FromSlice;

    let mut r = new(2, 2, 3, 4, Pixel::GrayF32, Type::Triangle).unwrap();
    let mut dst = vec![0.; 12];
    r.resize_stride(&[
        65535.,65535.,1.,2.,
        65535.,65535.,3.,4.,
    ].as_gray(), 4, dst.as_gray_mut()).unwrap();
    assert_eq!(&dst, &[65535.; 12]);
}