1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! A simple and type agnostic dual-quaternion math library designed for reexporting

extern crate vecmath;
extern crate quaternion;

use quaternion::Quaternion;
use vecmath::Vector3;
use vecmath::traits::Float;

/// A dual-quaternion consists of a real component and a dual component,
/// and can be used to represent both rotation and translation
pub type DualQuaternion<T> = (Quaternion<T>, Quaternion<T>);

/// Constructs identity dual-quaternion, representing no rotation or translation.
#[inline(always)]
pub fn id<T: Float>() -> DualQuaternion<T> {
    let one = T::one();
    let zero = T::zero();
    (
        (one, [zero, zero, zero]),
        (zero, [zero, zero, zero])
    )
}

/// Construct a dual-quaternion from separate rotation and translation components
#[inline(always)]
pub fn from_rotation_and_translation<T: Float>(rotation: Quaternion<T>, translation: Vector3<T>) -> DualQuaternion<T> {
    let zero = T::zero();
    let half = T::from_f64(0.5);
    (
        rotation,
        quaternion::scale(
            quaternion::mul((zero, translation), rotation),
            half
        )
    )
}

/// Adds two dual-quaternions
#[inline(always)]
pub fn add<T: Float>(a: DualQuaternion<T>, b: DualQuaternion<T>) -> DualQuaternion<T> {
    (
        quaternion::add(a.0, b.0),
        quaternion::add(a.1, b.1)
    )
}

/// Multiplies two dual-quaternions
#[inline(always)]
pub fn mul<T: Float>(a: DualQuaternion<T>, b: DualQuaternion<T>) -> DualQuaternion<T> {
    (
        quaternion::mul(a.0, b.0),
        quaternion::add(
            quaternion::mul(a.0, b.1),
            quaternion::mul(a.1, b.0)
        )
    )
}

/// Scales a dual-quaternion (element-wise) by a scalar
#[inline(always)]
pub fn scale<T: Float>(q: DualQuaternion<T>, t: T) -> DualQuaternion<T>
{
    (quaternion::scale(q.0, t), quaternion::scale(q.1, t))
}

/// Returns the dual-quaternion conjugate
#[inline(always)]
pub fn conj<T: Float>(q: DualQuaternion<T>) -> DualQuaternion<T> {
    (
        quaternion::conj(q.0),
        quaternion::conj(q.1)
    )
}

/// Dot product of two dual-quaternions
#[inline(always)]
pub fn dot<T: Float>(a: DualQuaternion<T>, b: DualQuaternion<T>) -> T {
    quaternion::dot(a.0, b.0)
}

/// Normalizes a dual-quaternion
pub fn normalize<T: Float>(q: DualQuaternion<T>) -> DualQuaternion<T> {
    let real_len_recip = T::one() / dot(q, q).sqrt();
    (
        quaternion::scale(q.0, real_len_recip),
        quaternion::add(
            quaternion::scale(q.1, real_len_recip),
            quaternion::scale(q.0, -quaternion::dot(q.0, q.1))
        )
    )
}

/// Extracts rotation component from a dual-quaternion
pub fn get_rotation<T: Float>(q: DualQuaternion<T>) -> Quaternion<T> {
    q.0
}

/// Extracts translation component from a dual-quaternion
pub fn get_translation<T: Float>(q: DualQuaternion<T>) -> Vector3<T> {
    let two = T::from_f64(2.0);
    let t = quaternion::mul(
        quaternion::scale(q.1, two),
        quaternion::conj(q.0)
    );
    t.1
}

/// Tests
#[cfg(test)]
mod test {

    use std::f32::consts::PI;
    use quaternion;
    use vecmath::Vector3;

    const EPSILON: f32 = 0.000001;

    #[test]
    fn test_construction_and_extraction() {
        let r = quaternion::euler_angles(PI, PI, PI);
        let t = [1.0, 2.0, 3.0];

        let dq = super::from_rotation_and_translation(r, t);

        let r_prime = super::get_rotation(dq);
        let t_prime = super::get_translation(dq);

        assert!((t_prime[0] - t[0]).abs() < EPSILON);
        assert!((t_prime[1] - t[1]).abs() < EPSILON);
        assert!((t_prime[2] - t[2]).abs() < EPSILON);

        assert!((r_prime.0 - r.0).abs() < EPSILON);
        assert!((r_prime.1[0] - r.1[0]).abs() < EPSILON);
        assert!((r_prime.1[1] - r.1[1]).abs() < EPSILON);
        assert!((r_prime.1[2] - r.1[2]).abs() < EPSILON);
    }

    #[test]
    fn test_mul_rotations() {

        let r1 = quaternion::euler_angles(PI / 2.0, PI, PI);
        let r2 = quaternion::euler_angles(PI / 2.0, -PI, 0.0);

        let t1 = [0.0, 0.0, 0.0];
        let t2 = [0.0, 0.0, 0.0];

        let dq1 = super::from_rotation_and_translation(r1, t1);
        let dq2 = super::from_rotation_and_translation(r2, t2);
        let dq3 = super::mul(dq1, dq2);

        let r_prime = super::get_rotation(dq3);
        let t_prime = super::get_translation(dq3);

        let r_expected = quaternion::euler_angles(PI, 0.0, PI);
        let t_expected = [0.0, 0.0, 0.0];

        assert!((t_prime[0] - t_expected[0]).abs() < EPSILON);
        assert!((t_prime[1] - t_expected[1]).abs() < EPSILON);
        assert!((t_prime[2] - t_expected[2]).abs() < EPSILON);

        let rotate_test_1 = quaternion::rotate_vector(r_prime, [1.0, 1.0, 1.0]);
        let rotate_test_2 = quaternion::rotate_vector(r_expected, [1.0, 1.0, 1.0]);

        assert!((rotate_test_1[0] - rotate_test_2[0]).abs() < EPSILON);
        assert!((rotate_test_1[1] - rotate_test_2[1]).abs() < EPSILON);
        assert!((rotate_test_1[2] - rotate_test_2[2]).abs() < EPSILON);

    }

    #[test]
    fn test_mul_translations() {

        let t1: Vector3<f32> = [1.0, 2.0, 3.0];
        let t2: Vector3<f32> = [1.0, -2.0, 0.0];

        let dq1 = super::from_rotation_and_translation(quaternion::id(), t1);
        let dq2 = super::from_rotation_and_translation(quaternion::id(), t2);
        let dq3 = super::mul(dq1, dq2);

        let r_prime = super::get_rotation(dq3);
        let t_prime = super::get_translation(dq3);

        let r_expected = quaternion::id();
        let t_expected = [2.0, 0.0, 3.0];

        assert!((t_prime[0] - t_expected[0]).abs() < EPSILON);
        assert!((t_prime[1] - t_expected[1]).abs() < EPSILON);
        assert!((t_prime[2] - t_expected[2]).abs() < EPSILON);

        let rotate_test_1 = quaternion::rotate_vector(r_prime, [1.0, 1.0, 1.0]);
        let rotate_test_2 = quaternion::rotate_vector(r_expected, [1.0, 1.0, 1.0]);

        assert!((rotate_test_1[0] - rotate_test_2[0]).abs() < EPSILON);
        assert!((rotate_test_1[1] - rotate_test_2[1]).abs() < EPSILON);
        assert!((rotate_test_1[2] - rotate_test_2[2]).abs() < EPSILON);

    }

    #[test]
    fn test_mul_conj() {
        let r = quaternion::euler_angles(PI, PI, PI);
        let t = [1.0, 2.0, 3.0];

        let dq = super::from_rotation_and_translation(r, t);
        let dq_conj = super::conj(dq);

        let dq_prime = super::mul(dq, dq_conj);
        let r_prime = super::get_rotation(dq_prime);
        let t_prime = super::get_translation(dq_prime);

        assert!((t_prime[0] - 0.0).abs() < EPSILON);
        assert!((t_prime[1] - 0.0).abs() < EPSILON);
        assert!((t_prime[2] - 0.0).abs() < EPSILON);

        assert!((r_prime.0 - 1.0).abs() < EPSILON);
        assert!((r_prime.1[0] - 0.0).abs() < EPSILON);
        assert!((r_prime.1[1] - 0.0).abs() < EPSILON);
        assert!((r_prime.1[2] - 0.0).abs() < EPSILON);
    }

}