1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//! Functions for computing [integral images](https://en.wikipedia.org/wiki/Summed_area_table)
//! and running sums of rows and columns.

use crate::definitions::Image;
use crate::map::{ChannelMap, WithChannel};
use image::{GenericImageView, GrayImage, Luma, Pixel, Primitive, Rgb, Rgba};
use std::ops::AddAssign;

/// Computes the 2d running sum of an image. Channels are summed independently.
///
/// An integral image I has width and height one greater than its source image F,
/// and is defined by I(x, y) = sum of F(x', y') for x' < x, y' < y, i.e. each pixel
/// in the integral image contains the sum of the pixel intensities of all input pixels
/// that are strictly above it and strictly to its left. In particular, the left column
/// and top row of an integral image are all 0, and the value of the bottom right pixel of
/// an integral image is equal to the sum of all pixels in the source image.
///
/// Integral images have the helpful property of allowing us to
/// compute the sum of pixel intensities in a rectangular region of an image
/// in constant time. Specifically, given a rectangle [l, r] * [t, b] in F,
/// the sum of the pixels in this rectangle is
/// I(r + 1, b + 1) - I(r + 1, t) - I(l, b + 1) + I(l, t).
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use imageproc::integral_image::{integral_image, sum_image_pixels};
///
/// let image = gray_image!(
///     1, 2, 3;
///     4, 5, 6);
///
/// let integral = gray_image!(type: u32,
///     0,  0,  0,  0;
///     0,  1,  3,  6;
///     0,  5, 12, 21);
///
/// assert_pixels_eq!(integral_image::<_, u32>(&image), integral);
///
/// // Compute the sum of all pixels in the right two columns
/// assert_eq!(sum_image_pixels(&integral, 1, 0, 2, 1)[0], 2 + 3 + 5 + 6);
///
/// // Compute the sum of all pixels in the top row
/// assert_eq!(sum_image_pixels(&integral, 0, 0, 2, 0)[0], 1 + 2 + 3);
/// # }
/// ```
pub fn integral_image<P, T>(image: &Image<P>) -> Image<ChannelMap<P, T>>
where
    P: Pixel<Subpixel = u8> + WithChannel<T> + 'static,
    T: From<u8> + Primitive + AddAssign + 'static,
{
    integral_image_impl(image, false)
}

/// Computes the 2d running sum of the squares of the intensities in an image. Channels are summed
/// independently.
///
/// See the [`integral_image`](fn.integral_image.html) documentation for more information on integral images.
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use imageproc::integral_image::{integral_squared_image, sum_image_pixels};
///
/// let image = gray_image!(
///     1, 2, 3;
///     4, 5, 6);
///
/// let integral = gray_image!(type: u32,
///     0,  0,  0,  0;
///     0,  1,  5, 14;
///     0, 17, 46, 91);
///
/// assert_pixels_eq!(integral_squared_image::<_, u32>(&image), integral);
///
/// // Compute the sum of the squares of all pixels in the right two columns
/// assert_eq!(sum_image_pixels(&integral, 1, 0, 2, 1)[0], 4 + 9 + 25 + 36);
///
/// // Compute the sum of the squares of all pixels in the top row
/// assert_eq!(sum_image_pixels(&integral, 0, 0, 2, 0)[0], 1 + 4 + 9);
/// # }
/// ```
pub fn integral_squared_image<P, T>(image: &Image<P>) -> Image<ChannelMap<P, T>>
where
    P: Pixel<Subpixel = u8> + WithChannel<T> + 'static,
    T: From<u8> + Primitive + AddAssign + 'static,
{
    integral_image_impl(image, true)
}

/// Implementation of `integral_image` and `integral_squared_image`.
fn integral_image_impl<P, T>(image: &Image<P>, square: bool) -> Image<ChannelMap<P, T>>
where
    P: Pixel<Subpixel = u8> + WithChannel<T> + 'static,
    T: From<u8> + Primitive + AddAssign + 'static,
{
    // TODO: Make faster, add a new IntegralImage type
    // TODO: to make it harder to make off-by-one errors when computing sums of regions.
    let (in_width, in_height) = image.dimensions();
    let out_width = in_width + 1;
    let out_height = in_height + 1;

    let mut out = Image::<ChannelMap<P, T>>::new(out_width, out_height);

    if in_width == 0 || in_height == 0 {
        return out;
    }

    for y in 0..in_height {
        let mut sum = vec![T::zero(); P::channel_count() as usize];
        for x in 0..in_width {
            // JUSTIFICATION
            //  Benefit
            //      Using checked indexing here makes bench_integral_image_rgb take 1.05x as long
            //      (The results are noisy, but this seems to be reproducible. I've not checked the generated assembly.)
            //  Correctness
            //      x and y are within bounds by definition of in_width and in_height
            let input = unsafe { image.unsafe_get_pixel(x, y) };
            for (s, c) in sum.iter_mut().zip(input.channels()) {
                let pix: T = (*c).into();
                *s += if square { pix * pix } else { pix };
            }

            // JUSTIFICATION
            //  Benefit
            //      Using checked indexing here makes bench_integral_image_rgb take 1.05x as long
            //      (The results are noisy, but this seems to be reproducible. I've not checked the generated assembly.)
            //  Correctness
            //      0 <= x < in_width, 0 <= y < in_height and out has width in_width + 1 and height in_height + 1
            let above = unsafe { out.unsafe_get_pixel(x + 1, y) };
            // For some reason there's no unsafe_get_pixel_mut, so to update the existing
            // pixel here we need to use the method with bounds checking
            let current = out.get_pixel_mut(x + 1, y + 1);
            // Using zip here makes this slower.
            for c in 0..P::channel_count() {
                current.channels_mut()[c as usize] = above.channels()[c as usize] + sum[c as usize];
            }
        }
    }

    out
}

/// Hack to get around lack of const generics. See comment on `sum_image_pixels`.
pub trait ArrayData {
    /// The type of the data for this array.
    /// e.g. `[T; 1]` for `Luma`, `[T; 3]` for `Rgb`.
    type DataType;

    /// Get the data from this pixel as a constant length array.
    fn data(&self) -> Self::DataType;

    /// Add the elements of two data arrays elementwise.
    fn add(lhs: Self::DataType, other: Self::DataType) -> Self::DataType;

    /// Subtract the elements of two data arrays elementwise.
    fn sub(lhs: Self::DataType, other: Self::DataType) -> Self::DataType;
}

impl<T: Primitive + 'static> ArrayData for Luma<T> {
    type DataType = [T; 1];

    fn data(&self) -> Self::DataType {
        [self.channels()[0]]
    }

    fn add(lhs: Self::DataType, rhs: Self::DataType) -> Self::DataType {
        [lhs[0] + rhs[0]]
    }

    fn sub(lhs: Self::DataType, rhs: Self::DataType) -> Self::DataType {
        [lhs[0] - rhs[0]]
    }
}

impl<T: Primitive + 'static> ArrayData for Rgb<T> {
    type DataType = [T; 3];

    fn data(&self) -> Self::DataType {
        [self.channels()[0], self.channels()[1], self.channels()[2]]
    }

    fn add(lhs: Self::DataType, rhs: Self::DataType) -> Self::DataType {
        [lhs[0] + rhs[0], lhs[1] + rhs[1], lhs[2] + rhs[2]]
    }

    fn sub(lhs: Self::DataType, rhs: Self::DataType) -> Self::DataType {
        [lhs[0] - rhs[0], lhs[1] - rhs[1], lhs[2] - rhs[2]]
    }
}

impl<T: Primitive + 'static> ArrayData for Rgba<T> {
    type DataType = [T; 4];

    fn data(&self) -> Self::DataType {
        [
            self.channels()[0],
            self.channels()[1],
            self.channels()[2],
            self.channels()[3],
        ]
    }

    fn add(lhs: Self::DataType, rhs: Self::DataType) -> Self::DataType {
        [
            lhs[0] + rhs[0],
            lhs[1] + rhs[1],
            lhs[2] + rhs[2],
            lhs[3] + rhs[3],
        ]
    }

    fn sub(lhs: Self::DataType, rhs: Self::DataType) -> Self::DataType {
        [
            lhs[0] - rhs[0],
            lhs[1] - rhs[1],
            lhs[2] - rhs[2],
            lhs[3] - rhs[3],
        ]
    }
}

/// Sums the pixels in positions [left, right] * [top, bottom] in F, where `integral_image` is the
/// integral image of F.
///
/// The of `ArrayData` here is due to lack of const generics. This library contains
/// implementations of `ArrayData` for `Luma`, `Rgb` and `Rgba` for any element type `T` that
/// implements `Primitive`. In that case, this function returns `[T; 1]` for an image
/// whose pixels are of type `Luma`, `[T; 3]` for `Rgb` pixels and `[T; 4]` for `Rgba` pixels.
///
/// See the [`integral_image`](fn.integral_image.html) documentation for examples.
pub fn sum_image_pixels<P>(
    integral_image: &Image<P>,
    left: u32,
    top: u32,
    right: u32,
    bottom: u32,
) -> P::DataType
where
    P: Pixel + ArrayData + Copy + 'static,
{
    // TODO: better type-safety. It's too easy to pass the original image in here by mistake.
    // TODO: it's also hard to see what the four u32s mean at the call site - use a Rect instead.
    let (a, b, c, d) = (
        integral_image.get_pixel(right + 1, bottom + 1).data(),
        integral_image.get_pixel(left, top).data(),
        integral_image.get_pixel(right + 1, top).data(),
        integral_image.get_pixel(left, bottom + 1).data(),
    );
    P::sub(P::sub(P::add(a, b), c), d)
}

/// Computes the variance of [left, right] * [top, bottom] in F, where `integral_image` is the
/// integral image of F and `integral_squared_image` is the integral image of the squares of the
/// pixels in F.
///
/// See the [`integral_image`](fn.integral_image.html) documentation for more information on integral images.
///
///# Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use std::f64;
/// use imageproc::integral_image::{integral_image, integral_squared_image, variance};
///
/// let image = gray_image!(
///     1, 2, 3;
///     4, 5, 6);
///
/// let integral = integral_image(&image);
/// let integral_squared = integral_squared_image(&image);
///
/// // Compute the variance of the pixels in the right two columns
/// let mean: f64 = (2.0 + 3.0 + 5.0 + 6.0) / 4.0;
/// let var = ((2.0 - mean).powi(2)
///     + (3.0 - mean).powi(2)
///     + (5.0 - mean).powi(2)
///     + (6.0 - mean).powi(2)) / 4.0;
///
/// assert_eq!(variance(&integral, &integral_squared, 1, 0, 2, 1), var);
/// # }
/// ```
pub fn variance(
    integral_image: &Image<Luma<u32>>,
    integral_squared_image: &Image<Luma<u32>>,
    left: u32,
    top: u32,
    right: u32,
    bottom: u32,
) -> f64 {
    // TODO: same improvements as for sum_image_pixels, plus check that the given rect is valid.
    let n = (right - left + 1) as f64 * (bottom - top + 1) as f64;
    let sum_sq = sum_image_pixels(integral_squared_image, left, top, right, bottom)[0];
    let sum = sum_image_pixels(integral_image, left, top, right, bottom)[0];
    (sum_sq as f64 - (sum as f64).powi(2) / n) / n
}

/// Computes the running sum of one row of image, padded
/// at the beginning and end. The padding is by continuity.
/// Takes a reference to buffer so that this can be reused
/// for all rows in an image.
///
/// # Panics
/// - If `buffer.len() < 2 * padding + image.width()`.
/// - If `row >= image.height()`.
/// - If `image.width() == 0`.
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use imageproc::integral_image::row_running_sum;
///
/// let image = gray_image!(
///     1, 2, 3;
///     4, 5, 6);
///
/// // Buffer has length two greater than image width, hence padding of 1
/// let mut buffer = [0; 5];
/// row_running_sum(&image, 0, &mut buffer, 1);
///
/// // The image is padded by continuity on either side
/// assert_eq!(buffer, [1, 2, 4, 7, 10]);
/// # }
/// ```
pub fn row_running_sum(image: &GrayImage, row: u32, buffer: &mut [u32], padding: u32) {
    // TODO: faster, more formats
    let (width, height) = image.dimensions();
    let (width, padding) = (width as usize, padding as usize);
    assert!(
        buffer.len() >= width + 2 * padding,
        "Buffer length {} is less than {} + 2 * {}",
        buffer.len(),
        width,
        padding
    );
    assert!(row < height, "row out of bounds: {} >= {}", row, height);
    assert!(width > 0, "image is empty");

    let row_data = &(**image)[width * row as usize..][..width];
    let first = row_data[0] as u32;
    let last = row_data[width - 1] as u32;

    let mut sum = 0;

    for b in &mut buffer[..padding] {
        sum += first;
        *b = sum;
    }
    for (b, p) in buffer[padding..].iter_mut().zip(row_data) {
        sum += *p as u32;
        *b = sum;
    }
    for b in &mut buffer[padding + width..] {
        sum += last;
        *b = sum;
    }
}

/// Computes the running sum of one column of image, padded
/// at the top and bottom. The padding is by continuity.
/// Takes a reference to buffer so that this can be reused
/// for all columns in an image.
///
/// # Panics
/// - If `buffer.len() < 2 * padding + image.height()`.
/// - If `column >= image.width()`.
/// - If `image.height() == 0`.
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use imageproc::integral_image::column_running_sum;
///
/// let image = gray_image!(
///     1, 4;
///     2, 5;
///     3, 6);
///
/// // Buffer has length two greater than image height, hence padding of 1
/// let mut buffer = [0; 5];
/// column_running_sum(&image, 0, &mut buffer, 1);
///
/// // The image is padded by continuity on top and bottom
/// assert_eq!(buffer, [1, 2, 4, 7, 10]);
/// # }
/// ```
pub fn column_running_sum(image: &GrayImage, column: u32, buffer: &mut [u32], padding: u32) {
    // TODO: faster, more formats
    let (width, height) = image.dimensions();
    assert!(
        // assertion 1
        buffer.len() >= height as usize + 2 * padding as usize,
        "Buffer length {} is less than {} + 2 * {}",
        buffer.len(),
        height,
        padding
    );
    assert!(
        // assertion 2
        column < width,
        "column out of bounds: {} >= {}",
        column,
        width
    );
    assert!(
        // assertion 3
        height > 0,
        "image is empty"
    );

    let first = image.get_pixel(column, 0)[0] as u32;
    let last = image.get_pixel(column, height - 1)[0] as u32;

    let mut sum = 0;

    for b in &mut buffer[..padding as usize] {
        sum += first;
        *b = sum;
    }
    // JUSTIFICATION:
    //  Benefit
    //      Using checked indexing here makes this function take 1.8x longer, as measured by bench_column_running_sum
    //  Correctness
    //      column is in bounds due to assertion 2.
    //      height + padding - 1 < buffer.len() due to assertions 1 and 3.
    unsafe {
        for y in 0..height {
            sum += image.unsafe_get_pixel(column, y)[0] as u32;
            *buffer.get_unchecked_mut(y as usize + padding as usize) = sum;
        }
    }
    for b in &mut buffer[padding as usize + height as usize..] {
        sum += last;
        *b = sum;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::definitions::Image;
    use crate::property_testing::GrayTestImage;
    use crate::utils::{gray_bench_image, pixel_diff_summary, rgb_bench_image};
    use ::test;
    use image::{GenericImage, ImageBuffer, Luma};
    use quickcheck::{quickcheck, TestResult};

    #[test]
    fn test_integral_image_gray() {
        let image = gray_image!(
            1, 2, 3;
            4, 5, 6);

        let expected = gray_image!(type: u32,
            0,  0,  0,  0;
            0,  1,  3,  6;
            0,  5, 12, 21);

        assert_pixels_eq!(integral_image::<_, u32>(&image), expected);
    }

    #[test]
    fn test_integral_image_rgb() {
        let image = rgb_image!(
            [1, 11, 21], [2, 12, 22], [3, 13, 23];
            [4, 14, 24], [5, 15, 25], [6, 16, 26]);

        let expected = rgb_image!(type: u32,
            [0, 0, 0],  [0,  0,  0], [ 0,  0,  0], [ 0,  0,   0];
            [0, 0, 0],  [1, 11, 21], [ 3, 23, 43], [ 6, 36,  66];
            [0, 0, 0],  [5, 25, 45], [12, 52, 92], [21, 81, 141]);

        assert_pixels_eq!(integral_image::<_, u32>(&image), expected);
    }

    #[test]
    fn test_sum_image_pixels() {
        let image = gray_image!(
            1, 2;
            3, 4);

        let integral = integral_image::<_, u32>(&image);

        // Top left
        assert_eq!(sum_image_pixels(&integral, 0, 0, 0, 0)[0], 1);
        // Top row
        assert_eq!(sum_image_pixels(&integral, 0, 0, 1, 0)[0], 3);
        // Left column
        assert_eq!(sum_image_pixels(&integral, 0, 0, 0, 1)[0], 4);
        // Whole image
        assert_eq!(sum_image_pixels(&integral, 0, 0, 1, 1)[0], 10);
        // Top right
        assert_eq!(sum_image_pixels(&integral, 1, 0, 1, 0)[0], 2);
        // Right column
        assert_eq!(sum_image_pixels(&integral, 1, 0, 1, 1)[0], 6);
        // Bottom left
        assert_eq!(sum_image_pixels(&integral, 0, 1, 0, 1)[0], 3);
        // Bottom row
        assert_eq!(sum_image_pixels(&integral, 0, 1, 1, 1)[0], 7);
        // Bottom right
        assert_eq!(sum_image_pixels(&integral, 1, 1, 1, 1)[0], 4);
    }

    #[test]
    fn test_sum_image_pixels_rgb() {
        let image = rgb_image!(
            [1,  2,  3], [ 4,  5,  6];
            [7,  8,  9], [10, 11, 12]);

        let integral = integral_image::<_, u32>(&image);

        // Top left
        assert_eq!(sum_image_pixels(&integral, 0, 0, 0, 0), [1, 2, 3]);
        // Top row
        assert_eq!(sum_image_pixels(&integral, 0, 0, 1, 0), [5, 7, 9]);
        // Left column
        assert_eq!(sum_image_pixels(&integral, 0, 0, 0, 1), [8, 10, 12]);
        // Whole image
        assert_eq!(sum_image_pixels(&integral, 0, 0, 1, 1), [22, 26, 30]);
        // Top right
        assert_eq!(sum_image_pixels(&integral, 1, 0, 1, 0), [4, 5, 6]);
        // Right column
        assert_eq!(sum_image_pixels(&integral, 1, 0, 1, 1), [14, 16, 18]);
        // Bottom left
        assert_eq!(sum_image_pixels(&integral, 0, 1, 0, 1), [7, 8, 9]);
        // Bottom row
        assert_eq!(sum_image_pixels(&integral, 0, 1, 1, 1), [17, 19, 21]);
        // Bottom right
        assert_eq!(sum_image_pixels(&integral, 1, 1, 1, 1), [10, 11, 12]);
    }

    #[bench]
    fn bench_integral_image_gray(b: &mut test::Bencher) {
        let image = gray_bench_image(500, 500);
        b.iter(|| {
            let integral = integral_image::<_, u32>(&image);
            test::black_box(integral);
        });
    }

    #[bench]
    fn bench_integral_image_rgb(b: &mut test::Bencher) {
        let image = rgb_bench_image(500, 500);
        b.iter(|| {
            let integral = integral_image::<_, u32>(&image);
            test::black_box(integral);
        });
    }

    /// Simple implementation of integral_image to validate faster versions against.
    fn integral_image_ref<I>(image: &I) -> Image<Luma<u32>>
    where
        I: GenericImage<Pixel = Luma<u8>>,
    {
        let (in_width, in_height) = image.dimensions();
        let (out_width, out_height) = (in_width + 1, in_height + 1);
        let mut out = ImageBuffer::from_pixel(out_width, out_height, Luma([0u32]));

        for y in 1..out_height {
            for x in 0..out_width {
                let mut sum = 0u32;

                for iy in 0..y {
                    for ix in 0..x {
                        sum += image.get_pixel(ix, iy)[0] as u32;
                    }
                }

                out.put_pixel(x, y, Luma([sum]));
            }
        }

        out
    }

    #[test]
    fn test_integral_image_matches_reference_implementation() {
        fn prop(image: GrayTestImage) -> TestResult {
            let expected = integral_image_ref(&image.0);
            let actual = integral_image(&image.0);
            match pixel_diff_summary(&actual, &expected) {
                None => TestResult::passed(),
                Some(err) => TestResult::error(err),
            }
        }
        quickcheck(prop as fn(GrayTestImage) -> TestResult);
    }

    #[bench]
    fn bench_row_running_sum(b: &mut test::Bencher) {
        let image = gray_bench_image(1000, 1);
        let mut buffer = [0; 1010];
        b.iter(|| {
            row_running_sum(&image, 0, &mut buffer, 5);
        });
    }

    #[bench]
    fn bench_column_running_sum(b: &mut test::Bencher) {
        let image = gray_bench_image(100, 1000);
        let mut buffer = [0; 1010];
        b.iter(|| {
            column_running_sum(&image, 0, &mut buffer, 5);
        });
    }
}