1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
//! The matrix module. //! //! Currently contains all code //! relating to the matrix linear algebra struct. //! //! Most of the logic for manipulating matrices is generically implemented //! via `BaseMatrix` and `BaseMatrixMut` trait. use std; use std::any::Any; use std::marker::PhantomData; use libnum::Float; use error::{Error, ErrorKind}; use vector::Vector; pub mod decomposition; mod base; mod deref; mod impl_mat; mod impl_ops; mod iter; mod mat_mul; mod slice; mod permutation_matrix; mod impl_permutation_mul; pub use self::base::{BaseMatrix, BaseMatrixMut}; pub use self::permutation_matrix::{PermutationMatrix, Parity}; /// Matrix dimensions #[derive(Debug, Clone, Copy)] pub enum Axes { /// The row axis. Row, /// The column axis. Col, } /// The `Matrix` struct. /// /// Can be instantiated with any type. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct Matrix<T> { rows: usize, cols: usize, data: Vec<T>, } /// A `MatrixSlice` /// /// This struct provides a slice into a matrix. /// /// The struct contains the upper left point of the slice /// and the width and height of the slice. #[derive(Debug, Clone, Copy)] pub struct MatrixSlice<'a, T: 'a> { ptr: *const T, rows: usize, cols: usize, row_stride: usize, marker: PhantomData<&'a T>, } /// A mutable `MatrixSliceMut` /// /// This struct provides a mutable slice into a matrix. /// /// The struct contains the upper left point of the slice /// and the width and height of the slice. #[derive(Debug)] pub struct MatrixSliceMut<'a, T: 'a> { ptr: *mut T, rows: usize, cols: usize, row_stride: usize, marker: PhantomData<&'a mut T>, } /// Row of a matrix. /// /// This struct points to a slice making up /// a row in a matrix. You can deref this /// struct to retrieve a `MatrixSlice` of /// the row. /// /// # Example /// /// ``` /// # #[macro_use] extern crate rulinalg; fn main() { /// use rulinalg::matrix::BaseMatrix; /// /// let mat = matrix![1.0, 2.0; /// 3.0, 4.0]; /// /// let row = mat.row(1); /// assert_eq!((*row + 2.0).sum(), 11.0); /// # } /// ``` #[derive(Debug, Clone, Copy)] pub struct Row<'a, T: 'a> { row: MatrixSlice<'a, T>, } /// Mutable row of a matrix. /// /// This struct points to a mutable slice /// making up a row in a matrix. You can deref /// this struct to retrieve a `MatrixSlice` /// of the row. /// /// # Example /// /// ``` /// # #[macro_use] extern crate rulinalg; fn main() { /// use rulinalg::matrix::BaseMatrixMut; /// /// let mut mat = matrix![1.0, 2.0; /// 3.0, 4.0]; /// /// { /// let mut row = mat.row_mut(1); /// *row += 2.0; /// } /// let expected = matrix![1.0, 2.0; /// 5.0, 6.0]; /// assert_matrix_eq!(mat, expected); /// # } /// ``` #[derive(Debug)] pub struct RowMut<'a, T: 'a> { row: MatrixSliceMut<'a, T>, } /// Row iterator. #[derive(Debug)] pub struct Rows<'a, T: 'a> { slice_start: *const T, row_pos: usize, slice_rows: usize, slice_cols: usize, row_stride: isize, _marker: PhantomData<&'a T>, } /// Mutable row iterator. #[derive(Debug)] pub struct RowsMut<'a, T: 'a> { slice_start: *mut T, row_pos: usize, slice_rows: usize, slice_cols: usize, row_stride: isize, _marker: PhantomData<&'a mut T>, } // MAYBE WE SHOULD MOVE SOME OF THIS STUFF OUT impl<'a, T: 'a> Row<'a, T> { /// Returns the row as a slice. pub fn raw_slice(&self) -> &'a [T] { unsafe { std::slice::from_raw_parts(self.row.as_ptr(), self.row.cols()) } } } impl<'a, T: 'a> RowMut<'a, T> { /// Returns the row as a slice. pub fn raw_slice(&self) -> &'a [T] { unsafe { std::slice::from_raw_parts(self.row.as_ptr(), self.row.cols()) } } /// Returns the row as a slice. pub fn raw_slice_mut(&mut self) -> &'a mut [T] { unsafe { std::slice::from_raw_parts_mut(self.row.as_mut_ptr(), self.row.cols()) } } } /// Column of a matrix. /// /// This struct points to a `MatrixSlice` /// making up a column in a matrix. /// You can deref this struct to retrieve /// the raw column `MatrixSlice`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate rulinalg; fn main() { /// use rulinalg::matrix::BaseMatrix; /// /// let mat = matrix![1.0, 2.0; /// 3.0, 4.0]; /// /// let col = mat.col(1); /// assert_eq!((*col + 2.0).sum(), 10.0); /// # } /// ``` #[derive(Debug, Clone, Copy)] pub struct Column<'a, T: 'a> { col: MatrixSlice<'a, T>, } /// Mutable column of a matrix. /// /// This struct points to a `MatrixSliceMut` /// making up a column in a matrix. /// You can deref this struct to retrieve /// the raw column `MatrixSliceMut`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate rulinalg; fn main() { /// use rulinalg::matrix::BaseMatrixMut; /// /// let mut mat = matrix![1.0, 2.0; /// 3.0, 4.0]; /// { /// let mut column = mat.col_mut(1); /// *column += 2.0; /// } /// let expected = matrix![1.0, 4.0; /// 3.0, 6.0]; /// assert_matrix_eq!(mat, expected); /// # } /// ``` #[derive(Debug)] pub struct ColumnMut<'a, T: 'a> { col: MatrixSliceMut<'a, T>, } /// Column iterator. #[derive(Debug)] pub struct Cols<'a, T: 'a> { _marker: PhantomData<&'a T>, col_pos: usize, row_stride: isize, slice_cols: usize, slice_rows: usize, slice_start: *const T, } /// Mutable column iterator. #[derive(Debug)] pub struct ColsMut<'a, T: 'a> { _marker: PhantomData<&'a mut T>, col_pos: usize, row_stride: isize, slice_cols: usize, slice_rows: usize, slice_start: *mut T, } /// Diagonal offset (used by Diagonal iterator). #[derive(Debug, PartialEq)] pub enum DiagOffset { /// The main diagonal of the matrix. Main, /// An offset above the main diagonal. Above(usize), /// An offset below the main diagonal. Below(usize), } /// An iterator over the diagonal elements of a matrix. #[derive(Debug)] pub struct Diagonal<'a, T: 'a, M: 'a + BaseMatrix<T>> { matrix: &'a M, diag_pos: usize, diag_end: usize, _marker: PhantomData<&'a T>, } /// An iterator over the mutable diagonal elements of a matrix. #[derive(Debug)] pub struct DiagonalMut<'a, T: 'a, M: 'a + BaseMatrixMut<T>> { matrix: &'a mut M, diag_pos: usize, diag_end: usize, _marker: PhantomData<&'a mut T>, } /// Iterator for matrix. /// /// Iterates over the underlying slice data /// in row-major order. #[derive(Debug)] pub struct SliceIter<'a, T: 'a> { slice_start: *const T, row_pos: usize, col_pos: usize, slice_rows: usize, slice_cols: usize, row_stride: usize, _marker: PhantomData<&'a T>, } /// Iterator for mutable matrix. /// /// Iterates over the underlying slice data /// in row-major order. #[derive(Debug)] pub struct SliceIterMut<'a, T: 'a> { slice_start: *mut T, row_pos: usize, col_pos: usize, slice_rows: usize, slice_cols: usize, row_stride: usize, _marker: PhantomData<&'a mut T>, } /// Back substitution fn back_substitution<T, M>(m: &M, y: Vector<T>) -> Result<Vector<T>, Error> where T: Any + Float, M: BaseMatrix<T> { if m.is_empty() { return Err(Error::new(ErrorKind::InvalidArg, "Matrix is empty.")); } let mut x = vec![T::zero(); y.size()]; unsafe { for i in (0..y.size()).rev() { let mut holding_u_sum = T::zero(); for j in (i + 1..y.size()).rev() { holding_u_sum = holding_u_sum + *m.get_unchecked([i, j]) * x[j]; } let diag = *m.get_unchecked([i, i]); if diag.abs() < T::min_positive_value() + T::min_positive_value() { return Err(Error::new(ErrorKind::AlgebraFailure, "Linear system cannot be solved (matrix is singular).")); } x[i] = (y[i] - holding_u_sum) / diag; } } Ok(Vector::new(x)) } /// forward substitution fn forward_substitution<T, M>(m: &M, y: Vector<T>) -> Result<Vector<T>, Error> where T: Any + Float, M: BaseMatrix<T> { if m.is_empty() { return Err(Error::new(ErrorKind::InvalidArg, "Matrix is empty.")); } let mut x = Vec::with_capacity(y.size()); unsafe { for (i, y_item) in y.data().iter().enumerate().take(y.size()) { let mut holding_l_sum = T::zero(); for (j, x_item) in x.iter().enumerate().take(i) { holding_l_sum = holding_l_sum + *m.get_unchecked([i, j]) * *x_item; } let diag = *m.get_unchecked([i, i]); if diag.abs() < T::min_positive_value() + T::min_positive_value() { return Err(Error::new(ErrorKind::AlgebraFailure, "Linear system cannot be solved (matrix is singular).")); } x.push((*y_item - holding_l_sum) / diag); } } Ok(Vector::new(x)) }