1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
use crate::{Glyph, GlyphIter, IntoGlyphId, LayoutIter, Point, Scale, VMetrics}; #[cfg(not(feature = "has-atomics"))] use alloc::rc::Rc as Arc; #[cfg(feature = "has-atomics")] use alloc::sync::Arc; #[cfg(not(feature = "std"))] use alloc::vec::Vec; use core::fmt; /// A single font. This may or may not own the font data. /// /// # Lifetime /// The lifetime reflects the font data lifetime. `Font<'static>` covers most /// cases ie both dynamically loaded owned data and for referenced compile time /// font data. /// /// # Example /// /// ``` /// # use rusttype::Font; /// # fn example() -> Option<()> { /// let font_data: &[u8] = include_bytes!("../dev/fonts/dejavu/DejaVuSansMono.ttf"); /// let font: Font<'static> = Font::try_from_bytes(font_data)?; /// /// let owned_font_data: Vec<u8> = font_data.to_vec(); /// let from_owned_font: Font<'static> = Font::try_from_vec(owned_font_data)?; /// # Some(()) /// # } /// ``` #[derive(Clone)] pub enum Font<'a> { Ref(Arc<owned_ttf_parser::Font<'a>>), Owned(Arc<owned_ttf_parser::OwnedFont>), } impl fmt::Debug for Font<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Font") } } impl Font<'_> { /// Creates a Font from byte-slice data. /// /// Returns `None` for invalid data. pub fn try_from_bytes(bytes: &[u8]) -> Option<Font<'_>> { Self::try_from_bytes_and_index(bytes, 0) } /// Creates a Font from byte-slice data & a font collection `index`. /// /// Returns `None` for invalid data. pub fn try_from_bytes_and_index(bytes: &[u8], index: u32) -> Option<Font<'_>> { let inner = Arc::new(owned_ttf_parser::Font::from_data(bytes, index)?); Some(Font::Ref(inner)) } /// Creates a Font from owned font data. /// /// Returns `None` for invalid data. pub fn try_from_vec(data: Vec<u8>) -> Option<Font<'static>> { Self::try_from_vec_and_index(data, 0) } /// Creates a Font from owned font data & a font collection `index`. /// /// Returns `None` for invalid data. pub fn try_from_vec_and_index(data: Vec<u8>, index: u32) -> Option<Font<'static>> { let inner = Arc::new(owned_ttf_parser::OwnedFont::from_vec(data, index)?); Some(Font::Owned(inner)) } } impl<'font> Font<'font> { #[inline] pub(crate) fn inner(&self) -> &owned_ttf_parser::Font<'_> { use owned_ttf_parser::AsFontRef; match self { Self::Ref(f) => f, Self::Owned(f) => f.as_font(), } } /// The "vertical metrics" for this font at a given scale. These metrics are /// shared by all of the glyphs in the font. See `VMetrics` for more detail. pub fn v_metrics(&self, scale: Scale) -> VMetrics { self.v_metrics_unscaled() * self.scale_for_pixel_height(scale.y) } /// Get the unscaled VMetrics for this font, shared by all glyphs. /// See `VMetrics` for more detail. pub fn v_metrics_unscaled(&self) -> VMetrics { let font = self.inner(); VMetrics { ascent: font.ascender() as f32, descent: font.descender() as f32, line_gap: font.line_gap() as f32, } } /// Returns the units per EM square of this font pub fn units_per_em(&self) -> u16 { self.inner() .units_per_em() .expect("Invalid font units_per_em") } /// The number of glyphs present in this font. Glyph identifiers for this /// font will always be in the range `0..self.glyph_count()` pub fn glyph_count(&self) -> usize { self.inner().number_of_glyphs() as _ } /// Returns the corresponding glyph for a Unicode code point or a glyph id /// for this font. /// /// If `id` is a `GlyphId`, it must be valid for this font; otherwise, this /// function panics. `GlyphId`s should always be produced by looking up some /// other sort of designator (like a Unicode code point) in a font, and /// should only be used to index the font they were produced for. /// /// Note that code points without corresponding glyphs in this font map to /// the ".notdef" glyph, glyph 0. pub fn glyph<C: IntoGlyphId>(&self, id: C) -> Glyph<'font> { let gid = id.into_glyph_id(self); assert!((gid.0 as usize) < self.glyph_count()); // font clone either a reference clone, or arc clone Glyph { font: self.clone(), id: gid, } } /// A convenience function. /// /// Returns an iterator that produces the glyphs corresponding to the code /// points or glyph ids produced by the given iterator `itr`. /// /// This is equivalent in behaviour to `itr.map(|c| font.glyph(c))`. pub fn glyphs_for<I: Iterator>(&self, itr: I) -> GlyphIter<'_, I> where I::Item: IntoGlyphId, { GlyphIter { font: self, itr } } /// A convenience function for laying out glyphs for a string horizontally. /// It does not take control characters like line breaks into account, as /// treatment of these is likely to depend on the application. /// /// Note that this function does not perform Unicode normalisation. /// Composite characters (such as ö constructed from two code points, ¨ and /// o), will not be normalised to single code points. So if a font does not /// contain a glyph for each separate code point, but does contain one for /// the normalised single code point (which is common), the desired glyph /// will not be produced, despite being present in the font. Deal with this /// by performing Unicode normalisation on the input string before passing /// it to `layout`. The crate /// [unicode-normalization](http://crates.io/crates/unicode-normalization) /// is perfect for this purpose. /// /// Calling this function is equivalent to a longer sequence of operations /// involving `glyphs_for`, e.g. /// /// ```no_run /// # use rusttype::*; /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0)); /// # let font: Font = unimplemented!(); /// font.layout("Hello World!", scale, start) /// # ; /// ``` /// /// produces an iterator with behaviour equivalent to the following: /// /// ```no_run /// # use rusttype::*; /// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0)); /// # let font: Font = unimplemented!(); /// font.glyphs_for("Hello World!".chars()) /// .scan((None, 0.0), |&mut (mut last, mut x), g| { /// let g = g.scaled(scale); /// if let Some(last) = last { /// x += font.pair_kerning(scale, last, g.id()); /// } /// let w = g.h_metrics().advance_width; /// let next = g.positioned(start + vector(x, 0.0)); /// last = Some(next.id()); /// x += w; /// Some(next) /// }) /// # ; /// ``` pub fn layout<'f, 's>( &'f self, s: &'s str, scale: Scale, start: Point<f32>, ) -> LayoutIter<'f, 's> { LayoutIter { font: self, chars: s.chars(), caret: 0.0, scale, start, last_glyph: None, } } /// Returns additional kerning to apply as well as that given by HMetrics /// for a particular pair of glyphs. pub fn pair_kerning<A, B>(&self, scale: Scale, first: A, second: B) -> f32 where A: IntoGlyphId, B: IntoGlyphId, { let first_id = first.into_glyph_id(self).into(); let second_id = second.into_glyph_id(self).into(); let factor = { let hscale = self.scale_for_pixel_height(scale.y); hscale * (scale.x / scale.y) }; let kern = self .inner() .kerning_subtables() .filter(|st| st.is_horizontal() && !st.is_variable()) .filter_map(|st| st.glyphs_kerning(first_id, second_id)) .next() .unwrap_or(0); factor * f32::from(kern) } /// Computes a scale factor to produce a font whose "height" is 'pixels' /// tall. Height is measured as the distance from the highest ascender /// to the lowest descender; in other words, it's equivalent to calling /// GetFontVMetrics and computing: /// scale = pixels / (ascent - descent) /// so if you prefer to measure height by the ascent only, use a similar /// calculation. pub fn scale_for_pixel_height(&self, height: f32) -> f32 { let inner = self.inner(); let fheight = f32::from(inner.ascender()) - f32::from(inner.descender()); height / fheight } }