1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
//! RustType is a pure Rust alternative to libraries like FreeType. //! //! The current capabilities of RustType: //! //! * Reading TrueType formatted fonts and font collections. This includes //! `*.ttf` as well as a subset of `*.otf` font files. //! * Retrieving glyph shapes and commonly used properties for a font and its //! glyphs. //! * Laying out glyphs horizontally using horizontal and vertical metrics, and //! glyph-pair-specific kerning. //! * Rasterising glyphs with sub-pixel positioning using an accurate analytical //! algorithm (not based on sampling). //! * Managing a font cache on the GPU with the `gpu_cache` module. This keeps //! recently used glyph renderings in a dynamic cache in GPU memory to //! minimise texture uploads per-frame. It also allows you keep the draw call //! count for text very low, as all glyphs are kept in one GPU texture. //! //! Notable things that RustType does not support *yet*: //! //! * OpenType formatted fonts that are not just TrueType fonts (OpenType is a //! superset of TrueType). Notably there is no support yet for cubic Bezier //! curves used in glyphs. //! * Font hinting. //! * Ligatures of any kind. //! * Some less common TrueType sub-formats. //! * Right-to-left and vertical text layout. //! //! # Getting Started //! //! To hit the ground running with RustType, look at the `ascii.rs` example //! supplied with the crate. It demonstrates loading a font file, rasterising an //! arbitrary string, and displaying the result as ASCII art. If you prefer to //! just look at the documentation, the entry point for loading fonts is //! `Font`, from which you can access individual fonts, then their //! glyphs. //! //! # Glyphs //! //! The glyph API uses wrapper structs to augment a glyph with information such //! as scaling and positioning, making relevant methods that make use of this //! information available as appropriate. For example, given a `Glyph` `glyph` //! obtained directly from a `Font`: //! //! ```no_run //! # use rusttype::*; //! # let glyph: Glyph<'static> = unimplemented!(); //! // One of the few things you can do with an unsized, positionless glyph is get its id. //! let id = glyph.id(); //! let glyph = glyph.scaled(Scale::uniform(10.0)); //! // Now glyph is a ScaledGlyph, you can do more with it, as well as what you can do with Glyph. //! // For example, you can access the correctly scaled horizontal metrics for the glyph. //! let h_metrics = glyph.h_metrics(); //! let glyph = glyph.positioned(point(5.0, 3.0)); //! // Now glyph is a PositionedGlyph, and you can do even more with it, e.g. drawing. //! glyph.draw(|x, y, v| {}); // In this case the pixel values are not used. //! ``` //! //! # Unicode terminology //! //! This crate uses terminology for computerised typography as specified by the //! Unicode standard. If you are not sure of the differences between a code //! point, a character, and a glyph, you may want to check the [official Unicode //! glossary](http://unicode.org/glossary/), or alternatively, here's my take on //! it from a practical perspective: //! //! * A character is what you would conventionally call a single symbol, //! independent of its appearance or representation in a particular font. //! Examples include `a`, `A`, `ä`, `å`, `1`, `*`, `Ω`, etc. //! * A Unicode code point is the particular number that the Unicode standard //! associates with a particular character. Note however that code points also //! exist for things not conventionally thought of as characters by //! themselves, but can be combined to form characters, such as diacritics //! like accents. These "characters" are known in Unicode as "combining //! characters". E.g., a diaeresis (`¨`) has the code point U+0308. If this //! code point follows the code point U+0055 (the letter `u`), this sequence //! represents the character `ü`. Note that there is also a single codepoint //! for `ü`, U+00FC. This means that what visually looks like the same string //! can have multiple different Unicode representations. Some fonts will have //! glyphs (see below) for one sequence of codepoints, but not another that //! has the same meaning. To deal with this problem it is recommended to use //! Unicode normalisation, as provided by, for example, the //! [unicode-normalization](http://crates.io/crates/unicode-normalization) //! crate, to convert to code point sequences that work with the font in //! question. Typically a font is more likely to support a single code point //! vs. a sequence with the same meaning, so the best normalisation to use is //! "canonical recomposition", known as NFC in the normalisation crate. //! * A glyph is a particular font's shape to draw the character for a //! particular Unicode code point. This will have its own identifying number //! unique to the font, its ID. #![allow( clippy::cognitive_complexity, clippy::doc_markdown, clippy::cast_lossless, clippy::many_single_char_names )] #![cfg_attr(not(feature = "std"), no_std)] extern crate alloc; mod font; mod geometry; mod outliner; #[cfg(all(feature = "libm-math", not(feature = "std")))] mod nostd_float; #[cfg(feature = "gpu_cache")] pub mod gpu_cache; pub use crate::geometry::{point, vector, Point, Rect, Vector}; pub use font::*; use core::fmt; #[cfg(all(feature = "libm-math", not(feature = "std")))] use crate::nostd_float::FloatExt; pub use owned_ttf_parser::OutlineBuilder; #[derive(Debug, Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)] pub struct GlyphId(pub u16); impl From<owned_ttf_parser::GlyphId> for GlyphId { fn from(id: owned_ttf_parser::GlyphId) -> Self { Self(id.0) } } impl From<GlyphId> for owned_ttf_parser::GlyphId { fn from(id: GlyphId) -> Self { Self(id.0) } } /// A single glyph of a font. /// /// A `Glyph` does not have an inherent scale or position associated with it. To /// augment a glyph with a size, give it a scale using `scaled`. You can then /// position it using `positioned`. #[derive(Clone)] pub struct Glyph<'font> { font: Font<'font>, id: GlyphId, } impl<'font> Glyph<'font> { /// The font to which this glyph belongs. pub fn font(&self) -> &Font<'font> { &self.font } /// The glyph identifier for this glyph. pub fn id(&self) -> GlyphId { self.id } /// Augments this glyph with scaling information, making methods that depend /// on the scale of the glyph available. pub fn scaled(self, scale: Scale) -> ScaledGlyph<'font> { let scale_y = self.font.scale_for_pixel_height(scale.y); let scale_x = scale_y * scale.x / scale.y; ScaledGlyph { g: self, api_scale: scale, scale: vector(scale_x, scale_y), } } } impl fmt::Debug for Glyph<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Glyph").field("id", &self.id().0).finish() } } /// The "horizontal metrics" of a glyph. This is useful for calculating the /// horizontal offset of a glyph from the previous one in a string when laying a /// string out horizontally. #[derive(Copy, Clone, Debug, PartialEq, PartialOrd)] pub struct HMetrics { /// The horizontal offset that the origin of the next glyph should be from /// the origin of this glyph. pub advance_width: f32, /// The horizontal offset between the origin of this glyph and the leftmost /// edge/point of the glyph. pub left_side_bearing: f32, } /// The "vertical metrics" of a font at a particular scale. This is useful for /// calculating the amount of vertical space to give a line of text, and for /// computing the vertical offset between successive lines. #[derive(Copy, Clone, Debug, PartialEq, PartialOrd)] pub struct VMetrics { /// The highest point that any glyph in the font extends to above the /// baseline. Typically positive. pub ascent: f32, /// The lowest point that any glyph in the font extends to below the /// baseline. Typically negative. pub descent: f32, /// The gap to leave between the descent of one line and the ascent of the /// next. This is of course only a guideline given by the font's designers. pub line_gap: f32, } impl core::ops::Mul<f32> for VMetrics { type Output = VMetrics; fn mul(self, rhs: f32) -> Self { Self { ascent: self.ascent * rhs, descent: self.descent * rhs, line_gap: self.line_gap * rhs, } } } /// A glyph augmented with scaling information. You can query such a glyph for /// information that depends on the scale of the glyph. #[derive(Clone)] pub struct ScaledGlyph<'font> { g: Glyph<'font>, api_scale: Scale, scale: Vector<f32>, } impl<'font> ScaledGlyph<'font> { /// The glyph identifier for this glyph. pub fn id(&self) -> GlyphId { self.g.id() } /// The font to which this glyph belongs. #[inline] pub fn font(&self) -> &Font<'font> { self.g.font() } /// A reference to this glyph without the scaling pub fn into_unscaled(self) -> Glyph<'font> { self.g } /// Removes the scaling from this glyph pub fn unscaled(&self) -> &Glyph<'font> { &self.g } /// Builds the outline of the glyph with the builder specified. Returns /// `false` when the outline is either malformed or empty. pub fn build_outline(&self, builder: &mut impl OutlineBuilder) -> bool { let mut outliner = crate::outliner::OutlineScaler::new(builder, vector(self.scale.x, -self.scale.y)); self.font() .inner() .outline_glyph(self.id().into(), &mut outliner) .is_some() } /// Augments this glyph with positioning information, making methods that /// depend on the position of the glyph available. pub fn positioned(self, p: Point<f32>) -> PositionedGlyph<'font> { let bb = self.pixel_bounds_at(p); PositionedGlyph { sg: self, position: p, bb, } } pub fn scale(&self) -> Scale { self.api_scale } /// Retrieves the "horizontal metrics" of this glyph. See `HMetrics` for /// more detail. pub fn h_metrics(&self) -> HMetrics { let inner = self.font().inner(); let id = self.id().into(); let advance = inner.glyph_hor_advance(id).unwrap(); let left_side_bearing = inner.glyph_hor_side_bearing(id).unwrap(); HMetrics { advance_width: advance as f32 * self.scale.x, left_side_bearing: left_side_bearing as f32 * self.scale.x, } } /// The bounding box of the shape of this glyph, not to be confused with /// `pixel_bounding_box`, the conservative pixel-boundary bounding box. The /// coordinates are relative to the glyph's origin. pub fn exact_bounding_box(&self) -> Option<Rect<f32>> { let owned_ttf_parser::Rect { x_min, y_min, x_max, y_max, } = self.font().inner().glyph_bounding_box(self.id().into())?; Some(Rect { min: point(x_min as f32 * self.scale.x, -y_max as f32 * self.scale.y), max: point(x_max as f32 * self.scale.x, -y_min as f32 * self.scale.y), }) } fn glyph_bitmap_box_subpixel( &self, font: &Font<'font>, shift_x: f32, shift_y: f32, ) -> Option<Rect<i32>> { let owned_ttf_parser::Rect { x_min, y_min, x_max, y_max, } = font.inner().glyph_bounding_box(self.id().into())?; Some(Rect { min: point( (x_min as f32 * self.scale.x + shift_x).floor() as i32, (-y_max as f32 * self.scale.y + shift_y).floor() as i32, ), max: point( (x_max as f32 * self.scale.x + shift_x).ceil() as i32, (-y_min as f32 * self.scale.y + shift_y).ceil() as i32, ), }) } #[inline] fn pixel_bounds_at(&self, p: Point<f32>) -> Option<Rect<i32>> { // Use subpixel fraction in floor/ceil rounding to eliminate rounding error // from identical subpixel positions let (x_trunc, x_fract) = (p.x.trunc() as i32, p.x.fract()); let (y_trunc, y_fract) = (p.y.trunc() as i32, p.y.fract()); let Rect { min, max } = self.glyph_bitmap_box_subpixel(self.font(), x_fract, y_fract)?; Some(Rect { min: point(x_trunc + min.x, y_trunc + min.y), max: point(x_trunc + max.x, y_trunc + max.y), }) } } impl fmt::Debug for ScaledGlyph<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("ScaledGlyph") .field("id", &self.id().0) .field("scale", &self.api_scale) .finish() } } /// A glyph augmented with positioning and scaling information. You can query /// such a glyph for information that depends on the scale and position of the /// glyph. #[derive(Clone)] pub struct PositionedGlyph<'font> { sg: ScaledGlyph<'font>, position: Point<f32>, bb: Option<Rect<i32>>, } impl<'font> PositionedGlyph<'font> { /// The glyph identifier for this glyph. pub fn id(&self) -> GlyphId { self.sg.id() } /// The font to which this glyph belongs. #[inline] pub fn font(&self) -> &Font<'font> { self.sg.font() } /// A reference to this glyph without positioning pub fn unpositioned(&self) -> &ScaledGlyph<'font> { &self.sg } /// Removes the positioning from this glyph pub fn into_unpositioned(self) -> ScaledGlyph<'font> { self.sg } /// The conservative pixel-boundary bounding box for this glyph. This is the /// smallest rectangle aligned to pixel boundaries that encloses the shape /// of this glyph at this position. Note that the origin of the glyph, at /// pixel-space coordinates (0, 0), is at the top left of the bounding box. pub fn pixel_bounding_box(&self) -> Option<Rect<i32>> { self.bb } pub fn scale(&self) -> Scale { self.sg.api_scale } pub fn position(&self) -> Point<f32> { self.position } /// Builds the outline of the glyph with the builder specified. Returns /// `false` when the outline is either malformed or empty. pub fn build_outline(&self, builder: &mut impl OutlineBuilder) -> bool { let bb = if let Some(bb) = self.bb.as_ref() { bb } else { return false; }; let offset = vector(bb.min.x as f32, bb.min.y as f32); let mut outliner = crate::outliner::OutlineTranslator::new(builder, self.position - offset); self.sg.build_outline(&mut outliner) } /// Rasterises this glyph. For each pixel in the rect given by /// `pixel_bounding_box()`, `o` is called: /// /// ```ignore /// o(x, y, v) /// ``` /// /// where `x` and `y` are the coordinates of the pixel relative to the `min` /// coordinates of the bounding box, and `v` is the analytically calculated /// coverage of the pixel by the shape of the glyph. Calls to `o` proceed in /// horizontal scanline order, similar to this pseudo-code: /// /// ```ignore /// let bb = glyph.pixel_bounding_box(); /// for y in 0..bb.height() { /// for x in 0..bb.width() { /// o(x, y, calc_coverage(&glyph, x, y)); /// } /// } /// ``` pub fn draw<O: FnMut(u32, u32, f32)>(&self, o: O) { let bb = if let Some(bb) = self.bb.as_ref() { bb } else { return; }; let width = (bb.max.x - bb.min.x) as u32; let height = (bb.max.y - bb.min.y) as u32; let mut outliner = crate::outliner::OutlineRasterizer::new(width as _, height as _); self.build_outline(&mut outliner); outliner.rasterizer.for_each_pixel_2d(o); } /// Resets positioning information and recalculates the pixel bounding box pub fn set_position(&mut self, p: Point<f32>) { let p_diff = p - self.position; if p_diff.x.fract().is_near_zero() && p_diff.y.fract().is_near_zero() { if let Some(bb) = self.bb.as_mut() { let rounded_diff = vector(p_diff.x.round() as i32, p_diff.y.round() as i32); bb.min = bb.min + rounded_diff; bb.max = bb.max + rounded_diff; } } else { self.bb = self.sg.pixel_bounds_at(p); } self.position = p; } } impl fmt::Debug for PositionedGlyph<'_> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("PositionedGlyph") .field("id", &self.id().0) .field("scale", &self.scale()) .field("position", &self.position) .finish() } } /// Defines the size of a rendered face of a font, in pixels, horizontally and /// vertically. A vertical scale of `y` pixels means that the distance between /// the ascent and descent lines (see `VMetrics`) of the face will be `y` /// pixels. If `x` and `y` are equal the scaling is uniform. Non-uniform scaling /// by a factor *f* in the horizontal direction is achieved by setting `x` equal /// to *f* times `y`. #[derive(Copy, Clone, PartialEq, PartialOrd, Debug)] pub struct Scale { /// Horizontal scale, in pixels. pub x: f32, /// Vertical scale, in pixels. pub y: f32, } impl Scale { /// Uniform scaling, equivalent to `Scale { x: s, y: s }`. #[inline] pub fn uniform(s: f32) -> Scale { Scale { x: s, y: s } } } /// A trait for types that can be converted into a `GlyphId`, in the context of /// a specific font. /// /// Many `rusttype` functions that operate on characters accept values of any /// type that implements `IntoGlyphId`. Such types include `char`, `Codepoint`, /// and obviously `GlyphId` itself. pub trait IntoGlyphId { /// Convert `self` into a `GlyphId`, consulting the index map of `font` if /// necessary. fn into_glyph_id(self, font: &Font<'_>) -> GlyphId; } impl IntoGlyphId for char { #[inline] fn into_glyph_id(self, font: &Font<'_>) -> GlyphId { font.inner() .glyph_index(self) .unwrap_or(owned_ttf_parser::GlyphId(0)) .into() } } impl<G: Into<GlyphId>> IntoGlyphId for G { #[inline] fn into_glyph_id(self, _font: &Font<'_>) -> GlyphId { self.into() } } #[derive(Clone)] pub struct GlyphIter<'b, I: Iterator> where I::Item: IntoGlyphId, { font: &'b Font<'b>, itr: I, } impl<'b, I> Iterator for GlyphIter<'b, I> where I: Iterator, I::Item: IntoGlyphId, { type Item = Glyph<'b>; fn next(&mut self) -> Option<Glyph<'b>> { self.itr.next().map(|c| self.font.glyph(c)) } } #[derive(Clone)] pub struct LayoutIter<'font, 's> { font: &'font Font<'font>, chars: core::str::Chars<'s>, caret: f32, scale: Scale, start: Point<f32>, last_glyph: Option<GlyphId>, } impl<'font, 's> Iterator for LayoutIter<'font, 's> { type Item = PositionedGlyph<'font>; fn next(&mut self) -> Option<PositionedGlyph<'font>> { self.chars.next().map(|c| { let g = self.font.glyph(c).scaled(self.scale); if let Some(last) = self.last_glyph { self.caret += self.font.pair_kerning(self.scale, last, g.id()); } let g = g.positioned(point(self.start.x + self.caret, self.start.y)); self.caret += g.sg.h_metrics().advance_width; self.last_glyph = Some(g.id()); g }) } } pub(crate) trait NearZero { /// Returns if this number is kinda pretty much zero. fn is_near_zero(self) -> bool; } impl NearZero for f32 { #[inline] fn is_near_zero(self) -> bool { self.abs() <= core::f32::EPSILON } }