1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The ChaCha random number generator.

use std::num::Wrapping as w;
use {Rng, SeedableRng, Rand, w32};

const KEY_WORDS    : usize =  8; // 8 words for the 256-bit key
const STATE_WORDS  : usize = 16;
const CHACHA_ROUNDS: u32 = 20; // Cryptographically secure from 8 upwards as of this writing

/// A random number generator that uses the ChaCha20 algorithm [1].
///
/// The ChaCha algorithm is widely accepted as suitable for
/// cryptographic purposes, but this implementation has not been
/// verified as such. Prefer a generator like `OsRng` that defers to
/// the operating system for cases that need high security.
///
/// [1]: D. J. Bernstein, [*ChaCha, a variant of
/// Salsa20*](http://cr.yp.to/chacha.html)
#[derive(Copy, Clone)]
pub struct ChaChaRng {
    buffer:  [w32; STATE_WORDS], // Internal buffer of output
    state:   [w32; STATE_WORDS], // Initial state
    index:   usize,                 // Index into state
}

static EMPTY: ChaChaRng = ChaChaRng {
    buffer:  [w(0); STATE_WORDS],
    state:   [w(0); STATE_WORDS],
    index:   STATE_WORDS
};


macro_rules! quarter_round{
    ($a: expr, $b: expr, $c: expr, $d: expr) => {{
        $a = $a + $b; $d = $d ^ $a; $d = w($d.0.rotate_left(16));
        $c = $c + $d; $b = $b ^ $c; $b = w($b.0.rotate_left(12));
        $a = $a + $b; $d = $d ^ $a; $d = w($d.0.rotate_left( 8));
        $c = $c + $d; $b = $b ^ $c; $b = w($b.0.rotate_left( 7));
    }}
}

macro_rules! double_round{
    ($x: expr) => {{
        // Column round
        quarter_round!($x[ 0], $x[ 4], $x[ 8], $x[12]);
        quarter_round!($x[ 1], $x[ 5], $x[ 9], $x[13]);
        quarter_round!($x[ 2], $x[ 6], $x[10], $x[14]);
        quarter_round!($x[ 3], $x[ 7], $x[11], $x[15]);
        // Diagonal round
        quarter_round!($x[ 0], $x[ 5], $x[10], $x[15]);
        quarter_round!($x[ 1], $x[ 6], $x[11], $x[12]);
        quarter_round!($x[ 2], $x[ 7], $x[ 8], $x[13]);
        quarter_round!($x[ 3], $x[ 4], $x[ 9], $x[14]);
    }}
}

#[inline]
fn core(output: &mut [w32; STATE_WORDS], input: &[w32; STATE_WORDS]) {
    *output = *input;

    for _ in 0..CHACHA_ROUNDS / 2 {
        double_round!(output);
    }

    for i in 0..STATE_WORDS {
        output[i] = output[i] + input[i];
    }
}

impl ChaChaRng {

    /// Create an ChaCha random number generator using the default
    /// fixed key of 8 zero words.
    pub fn new_unseeded() -> ChaChaRng {
        let mut rng = EMPTY;
        rng.init(&[0; KEY_WORDS]);
        rng
    }

    /// Sets the internal 128-bit ChaCha counter to
    /// a user-provided value. This permits jumping
    /// arbitrarily ahead (or backwards) in the pseudorandom stream.
    ///
    /// Since the nonce words are used to extend the counter to 128 bits,
    /// users wishing to obtain the conventional ChaCha pseudorandom stream
    /// associated with a particular nonce can call this function with
    /// arguments `0, desired_nonce`.
    pub fn set_counter(&mut self, counter_low: u64, counter_high: u64) {
        self.state[12] = w((counter_low >>  0) as u32);
        self.state[13] = w((counter_low >> 32) as u32);
        self.state[14] = w((counter_high >>  0) as u32);
        self.state[15] = w((counter_high >> 32) as u32);
        self.index = STATE_WORDS; // force recomputation
    }

    /// Initializes `self.state` with the appropriate key and constants
    ///
    /// We deviate slightly from the ChaCha specification regarding
    /// the nonce, which is used to extend the counter to 128 bits.
    /// This is provably as strong as the original cipher, though,
    /// since any distinguishing attack on our variant also works
    /// against ChaCha with a chosen-nonce. See the XSalsa20 [1]
    /// security proof for a more involved example of this.
    ///
    /// The modified word layout is:
    /// ```text
    /// constant constant constant constant
    /// key      key      key      key
    /// key      key      key      key
    /// counter  counter  counter  counter
    /// ```
    /// [1]: Daniel J. Bernstein. [*Extending the Salsa20
    /// nonce.*](http://cr.yp.to/papers.html#xsalsa)
    fn init(&mut self, key: &[u32; KEY_WORDS]) {
        self.state[0] = w(0x61707865);
        self.state[1] = w(0x3320646E);
        self.state[2] = w(0x79622D32);
        self.state[3] = w(0x6B206574);

        for i in 0..KEY_WORDS {
            self.state[4+i] = w(key[i]);
        }

        self.state[12] = w(0);
        self.state[13] = w(0);
        self.state[14] = w(0);
        self.state[15] = w(0);

        self.index = STATE_WORDS;
    }

    /// Refill the internal output buffer (`self.buffer`)
    fn update(&mut self) {
        core(&mut self.buffer, &self.state);
        self.index = 0;
        // update 128-bit counter
        self.state[12] = self.state[12] + w(1);
        if self.state[12] != w(0) { return };
        self.state[13] = self.state[13] + w(1);
        if self.state[13] != w(0) { return };
        self.state[14] = self.state[14] + w(1);
        if self.state[14] != w(0) { return };
        self.state[15] = self.state[15] + w(1);
    }
}

impl Rng for ChaChaRng {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        if self.index == STATE_WORDS {
            self.update();
        }

        let value = self.buffer[self.index % STATE_WORDS];
        self.index += 1;
        value.0
    }
}

impl<'a> SeedableRng<&'a [u32]> for ChaChaRng {

    fn reseed(&mut self, seed: &'a [u32]) {
        // reset state
        self.init(&[0u32; KEY_WORDS]);
        // set key in place
        let key = &mut self.state[4 .. 4+KEY_WORDS];
        for (k, s) in key.iter_mut().zip(seed.iter()) {
            *k = w(*s);
        }
    }

    /// Create a ChaCha generator from a seed,
    /// obtained from a variable-length u32 array.
    /// Only up to 8 words are used; if less than 8
    /// words are used, the remaining are set to zero.
    fn from_seed(seed: &'a [u32]) -> ChaChaRng {
        let mut rng = EMPTY;
        rng.reseed(seed);
        rng
    }
}

impl Rand for ChaChaRng {
    fn rand<R: Rng>(other: &mut R) -> ChaChaRng {
        let mut key : [u32; KEY_WORDS] = [0; KEY_WORDS];
        for word in key.iter_mut() {
            *word = other.gen();
        }
        SeedableRng::from_seed(&key[..])
    }
}


#[cfg(test)]
mod test {
    use std::iter::order;
    use {Rng, SeedableRng};
    use super::ChaChaRng;

    #[test]
    fn test_rng_rand_seeded() {
        let s = ::test::rng().gen_iter::<u32>().take(8).collect::<Vec<u32>>();
        let mut ra: ChaChaRng = SeedableRng::from_seed(&s[..]);
        let mut rb: ChaChaRng = SeedableRng::from_seed(&s[..]);
        assert!(order::equals(ra.gen_ascii_chars().take(100),
                              rb.gen_ascii_chars().take(100)));
    }

    #[test]
    fn test_rng_seeded() {
        let seed : &[_] = &[0,1,2,3,4,5,6,7];
        let mut ra: ChaChaRng = SeedableRng::from_seed(seed);
        let mut rb: ChaChaRng = SeedableRng::from_seed(seed);
        assert!(order::equals(ra.gen_ascii_chars().take(100),
                              rb.gen_ascii_chars().take(100)));
    }

    #[test]
    fn test_rng_reseed() {
        let s = ::test::rng().gen_iter::<u32>().take(8).collect::<Vec<u32>>();
        let mut r: ChaChaRng = SeedableRng::from_seed(&s[..]);
        let string1: String = r.gen_ascii_chars().take(100).collect();

        r.reseed(&s);

        let string2: String = r.gen_ascii_chars().take(100).collect();
        assert_eq!(string1, string2);
    }

    #[test]
    fn test_rng_true_values() {
        // Test vectors 1 and 2 from
        // http://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
        let seed : &[_] = &[0u32; 8];
        let mut ra: ChaChaRng = SeedableRng::from_seed(seed);

        let v = (0..16).map(|_| ra.next_u32()).collect::<Vec<_>>();
        assert_eq!(v,
                   vec!(0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653,
                        0xb819d2bd, 0x1aed8da0, 0xccef36a8, 0xc70d778b,
                        0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8,
                        0xf4b8436a, 0x1ca11815, 0x69b687c3, 0x8665eeb2));

        let v = (0..16).map(|_| ra.next_u32()).collect::<Vec<_>>();
        assert_eq!(v,
                   vec!(0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73,
                        0xa0290fcb, 0x6965e348, 0x3e53c612, 0xed7aee32,
                        0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874,
                        0x281fed31, 0x45fb0a51, 0x1f0ae1ac, 0x6f4d794b));


        let seed : &[_] = &[0,1,2,3,4,5,6,7];
        let mut ra: ChaChaRng = SeedableRng::from_seed(seed);

        // Store the 17*i-th 32-bit word,
        // i.e., the i-th word of the i-th 16-word block
        let mut v : Vec<u32> = Vec::new();
        for _ in 0..16 {
            v.push(ra.next_u32());
            for _ in 0..16 {
                ra.next_u32();
            }
        }

        assert_eq!(v,
                   vec!(0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036,
                        0x49884684, 0x64efec72, 0x4be2d186, 0x3615b384,
                        0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530,
                        0x2c5bad8f, 0x898881dc, 0x5f1c86d9, 0xc1f8e7f4));
    }

    #[test]
    fn test_rng_clone() {
        let seed : &[_] = &[0u32; 8];
        let mut rng: ChaChaRng = SeedableRng::from_seed(seed);
        let mut clone = rng.clone();
        for _ in 0..16 {
            assert_eq!(rng.next_u64(), clone.next_u64());
        }
    }
}