1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The exponential distribution.

use {Rng, Rand};
use distributions::{ziggurat, ziggurat_tables, Sample, IndependentSample};

/// A wrapper around an `f64` to generate Exp(1) random numbers.
///
/// See `Exp` for the general exponential distribution.Note that this
 // has to be unwrapped before use as an `f64` (using either
/// `*` or `mem::transmute` is safe).
///
/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. The
/// exact description in the paper was adjusted to use tables for the
/// exponential distribution rather than normal.
///
/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random
/// Samples*](http://www.doornik.com/research/ziggurat.pdf). Nuffield
/// College, Oxford
#[derive(Clone, Copy)]
pub struct Exp1(pub f64);

// This could be done via `-rng.gen::<f64>().ln()` but that is slower.
impl Rand for Exp1 {
    #[inline]
    fn rand<R:Rng>(rng: &mut R) -> Exp1 {
        #[inline]
        fn pdf(x: f64) -> f64 {
            (-x).exp()
        }
        #[inline]
        fn zero_case<R:Rng>(rng: &mut R, _u: f64) -> f64 {
            ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln()
        }

        Exp1(ziggurat(rng, false,
                      &ziggurat_tables::ZIG_EXP_X,
                      &ziggurat_tables::ZIG_EXP_F,
                      pdf, zero_case))
    }
}

/// The exponential distribution `Exp(lambda)`.
///
/// This distribution has density function: `f(x) = lambda *
/// exp(-lambda * x)` for `x > 0`.
///
/// # Example
///
/// ```rust
/// use rand::distributions::{Exp, IndependentSample};
///
/// let exp = Exp::new(2.0);
/// let v = exp.ind_sample(&mut rand::thread_rng());
/// println!("{} is from a Exp(2) distribution", v);
/// ```
#[derive(Clone, Copy)]
pub struct Exp {
    /// `lambda` stored as `1/lambda`, since this is what we scale by.
    lambda_inverse: f64
}

impl Exp {
    /// Construct a new `Exp` with the given shape parameter
    /// `lambda`. Panics if `lambda <= 0`.
    pub fn new(lambda: f64) -> Exp {
        assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0");
        Exp { lambda_inverse: 1.0 / lambda }
    }
}

impl Sample<f64> for Exp {
    fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 { self.ind_sample(rng) }
}
impl IndependentSample<f64> for Exp {
    fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
        let Exp1(n) = rng.gen::<Exp1>();
        n * self.lambda_inverse
    }
}

#[cfg(test)]
mod test {
    use distributions::{Sample, IndependentSample};
    use super::Exp;

    #[test]
    fn test_exp() {
        let mut exp = Exp::new(10.0);
        let mut rng = ::test::rng();
        for _ in 0..1000 {
            assert!(exp.sample(&mut rng) >= 0.0);
            assert!(exp.ind_sample(&mut rng) >= 0.0);
        }
    }
    #[test]
    #[should_panic]
    fn test_exp_invalid_lambda_zero() {
        Exp::new(0.0);
    }
    #[test]
    #[should_panic]
    fn test_exp_invalid_lambda_neg() {
        Exp::new(-10.0);
    }
}

#[cfg(test)]
mod bench {
    extern crate test;

    use self::test::Bencher;
    use std::mem::size_of;
    use super::Exp;
    use distributions::Sample;

    #[bench]
    fn rand_exp(b: &mut Bencher) {
        let mut rng = ::test::weak_rng();
        let mut exp = Exp::new(2.71828 * 3.14159);

        b.iter(|| {
            for _ in 0..::RAND_BENCH_N {
                exp.sample(&mut rng);
            }
        });
        b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N;
    }
}