1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A wrapper around another RNG that reseeds it after it
//! generates a certain number of random bytes.

use std::default::Default;

use {Rng, SeedableRng};

/// How many bytes of entropy the underling RNG is allowed to generate
/// before it is reseeded
const DEFAULT_GENERATION_THRESHOLD: u64 = 32 * 1024;

/// A wrapper around any RNG which reseeds the underlying RNG after it
/// has generated a certain number of random bytes.
pub struct ReseedingRng<R, Rsdr> {
    rng: R,
    generation_threshold: u64,
    bytes_generated: u64,
    /// Controls the behaviour when reseeding the RNG.
    pub reseeder: Rsdr,
}

impl<R: Rng, Rsdr: Reseeder<R>> ReseedingRng<R, Rsdr> {
    /// Create a new `ReseedingRng` with the given parameters.
    ///
    /// # Arguments
    ///
    /// * `rng`: the random number generator to use.
    /// * `generation_threshold`: the number of bytes of entropy at which to reseed the RNG.
    /// * `reseeder`: the reseeding object to use.
    pub fn new(rng: R, generation_threshold: u64, reseeder: Rsdr) -> ReseedingRng<R,Rsdr> {
        ReseedingRng {
            rng: rng,
            generation_threshold: generation_threshold,
            bytes_generated: 0,
            reseeder: reseeder
        }
    }

    /// Reseed the internal RNG if the number of bytes that have been
    /// generated exceed the threshold.
    pub fn reseed_if_necessary(&mut self) {
        if self.bytes_generated >= self.generation_threshold {
            self.reseeder.reseed(&mut self.rng);
            self.bytes_generated = 0;
        }
    }
}


impl<R: Rng, Rsdr: Reseeder<R>> Rng for ReseedingRng<R, Rsdr> {
    fn next_u32(&mut self) -> u32 {
        self.reseed_if_necessary();
        self.bytes_generated += 4;
        self.rng.next_u32()
    }

    fn next_u64(&mut self) -> u64 {
        self.reseed_if_necessary();
        self.bytes_generated += 8;
        self.rng.next_u64()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        self.reseed_if_necessary();
        self.bytes_generated += dest.len() as u64;
        self.rng.fill_bytes(dest)
    }
}

impl<S, R: SeedableRng<S>, Rsdr: Reseeder<R> + Default>
     SeedableRng<(Rsdr, S)> for ReseedingRng<R, Rsdr> {
    fn reseed(&mut self, (rsdr, seed): (Rsdr, S)) {
        self.rng.reseed(seed);
        self.reseeder = rsdr;
        self.bytes_generated = 0;
    }

    /// Create a new `ReseedingRng` from the given reseeder and
    /// seed. This uses a default value for `generation_threshold`.
    fn from_seed((rsdr, seed): (Rsdr, S)) -> ReseedingRng<R, Rsdr> {
        ReseedingRng {
            rng: SeedableRng::from_seed(seed),
            generation_threshold: DEFAULT_GENERATION_THRESHOLD,
            bytes_generated: 0,
            reseeder: rsdr
        }
    }
}

/// Something that can be used to reseed an RNG via `ReseedingRng`.
///
/// # Example
///
/// ```rust
/// use rand::{Rng, SeedableRng, StdRng};
/// use rand::reseeding::{Reseeder, ReseedingRng};
///
/// struct TickTockReseeder { tick: bool }
/// impl Reseeder<StdRng> for TickTockReseeder {
///     fn reseed(&mut self, rng: &mut StdRng) {
///         let val = if self.tick {0} else {1};
///         rng.reseed(&[val]);
///         self.tick = !self.tick;
///     }
/// }
/// fn main() {
///     let rsdr = TickTockReseeder { tick: true };
///
///     let inner = StdRng::new().unwrap();
///     let mut rng = ReseedingRng::new(inner, 10, rsdr);
///
///     // this will repeat, because it gets reseeded very regularly.
///     let s: String = rng.gen_ascii_chars().take(100).collect();
///     println!("{}", s);
/// }
///
/// ```
pub trait Reseeder<R> {
    /// Reseed the given RNG.
    fn reseed(&mut self, rng: &mut R);
}

/// Reseed an RNG using a `Default` instance. This reseeds by
/// replacing the RNG with the result of a `Default::default` call.
#[derive(Clone, Copy)]
pub struct ReseedWithDefault;

impl<R: Rng + Default> Reseeder<R> for ReseedWithDefault {
    fn reseed(&mut self, rng: &mut R) {
        *rng = Default::default();
    }
}
impl Default for ReseedWithDefault {
    fn default() -> ReseedWithDefault { ReseedWithDefault }
}

#[cfg(test)]
mod test {
    use std::default::Default;
    use std::iter::{order, repeat};
    use super::{ReseedingRng, ReseedWithDefault};
    use {SeedableRng, Rng};

    struct Counter {
        i: u32
    }

    impl Rng for Counter {
        fn next_u32(&mut self) -> u32 {
            self.i += 1;
            // very random
            self.i - 1
        }
    }
    impl Default for Counter {
        fn default() -> Counter {
            Counter { i: 0 }
        }
    }
    impl SeedableRng<u32> for Counter {
        fn reseed(&mut self, seed: u32) {
            self.i = seed;
        }
        fn from_seed(seed: u32) -> Counter {
            Counter { i: seed }
        }
    }
    type MyRng = ReseedingRng<Counter, ReseedWithDefault>;

    #[test]
    fn test_reseeding() {
        let mut rs = ReseedingRng::new(Counter {i:0}, 400, ReseedWithDefault);

        let mut i = 0;
        for _ in 0..1000 {
            assert_eq!(rs.next_u32(), i % 100);
            i += 1;
        }
    }

    #[test]
    fn test_rng_seeded() {
        let mut ra: MyRng = SeedableRng::from_seed((ReseedWithDefault, 2));
        let mut rb: MyRng = SeedableRng::from_seed((ReseedWithDefault, 2));
        assert!(order::equals(ra.gen_ascii_chars().take(100),
                              rb.gen_ascii_chars().take(100)));
    }

    #[test]
    fn test_rng_reseed() {
        let mut r: MyRng = SeedableRng::from_seed((ReseedWithDefault, 3));
        let string1: String = r.gen_ascii_chars().take(100).collect();

        r.reseed((ReseedWithDefault, 3));

        let string2: String = r.gen_ascii_chars().take(100).collect();
        assert_eq!(string1, string2);
    }

    const FILL_BYTES_V_LEN: usize = 13579;
    #[test]
    fn test_rng_fill_bytes() {
        let mut v = repeat(0u8).take(FILL_BYTES_V_LEN).collect::<Vec<_>>();
        ::test::rng().fill_bytes(&mut v);

        // Sanity test: if we've gotten here, `fill_bytes` has not infinitely
        // recursed.
        assert_eq!(v.len(), FILL_BYTES_V_LEN);

        // To test that `fill_bytes` actually did something, check that the
        // average of `v` is not 0.
        let mut sum = 0.0;
        for &x in v.iter() {
            sum += x as f64;
        }
        assert!(sum / v.len() as f64 != 0.0);
    }
}