Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
//! A flat grid with square cells.

use math::{Matrix2d, Scalar, Vec2d};
use {DrawState, Graphics, Line};

/// Represents a flat grid with square cells.
#[derive(Debug, Copy, Clone)]
pub struct Grid {
    /// Number of columns.
    pub cols: u32,
    /// Number of rows.
    pub rows: u32,
    /// The width and height of each grid cell.
    pub units: Scalar,
}

/// Iterates through the cells of a grid as (u32, u32).
#[derive(Debug, Copy, Clone)]
pub struct GridCells {
    cols: u32,
    rows: u32,
    state: u64,
}

impl Grid {
    /// Draws the grid.
    pub fn draw<G>(&self, line: &Line, draw_state: &DrawState, transform: Matrix2d, g: &mut G)
        where G: Graphics
    {
        let &Grid { cols, rows, units } = self;
        for x in 0..cols + 1 {
            let x1 = x as Scalar * units;
            let y1 = 0.0;
            let x2 = x1;
            let y2 = rows as Scalar * units;
            line.draw([x1, y1, x2, y2], draw_state, transform, g);
        }
        for y in 0..rows + 1 {
            let x1 = 0.0;
            let y1 = y as Scalar * units;
            let x2 = cols as Scalar * units;
            let y2 = y1;
            line.draw([x1, y1, x2, y2], draw_state, transform, g);
        }
    }

    /// Get a GridIterator for the grid
    pub fn cells(&self) -> GridCells {
        GridCells {
            cols: self.cols,
            rows: self.rows,
            state: 0,
        }
    }

    /// Get on-screen position of a grid cell
    pub fn cell_position(&self, cell: (u32, u32)) -> Vec2d {
        [cell.0 as Scalar * &self.units, cell.1 as Scalar * &self.units]
    }

    /// Get on-screen x position of a grid cell
    pub fn x_pos(&self, cell: (u32, u32)) -> Scalar {
        self.cell_position(cell)[0]
    }

    /// Get on-screen y position of a grid cell
    pub fn y_pos(&self, cell: (u32, u32)) -> Scalar {
        self.cell_position(cell)[1]
    }
}

impl Iterator for GridCells {
    type Item = (u32, u32);

    fn next(&mut self) -> Option<(u32, u32)> {
        let cols = self.cols as u64;
        let rows = self.rows as u64;

        if self.state == cols * rows {
            return None;
        }

        // reverse of: state = x + (y * cols)
        let ret = ((self.state % cols) as u32, (self.state / cols) as u32);
        self.state += 1;

        return Some(ret);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_grid_iterator() {
        let combinations = vec![(2, 2), (2, 3), (3, 2)];

        for (cols, rows) in combinations {
            let grid = Grid {
                cols: cols,
                rows: rows,
                units: 2.0,
            };
            println!("Testing {:?}", grid);

            let mut iter = grid.cells();
            for y in 0..rows {
                for x in 0..cols {
                    assert_eq!(iter.next(), Some((x, y)));
                    println!("Got: {:?}", (x, y));
                }
            }

            assert_eq!(iter.next(), None);
        }
    }

    #[test]
    fn test_cell_positions() {
        let g: Grid = Grid {
            cols: 2,
            rows: 3,
            units: 2.0,
        };
        assert_eq!(4.0, g.x_pos((2, 3)));
        assert_eq!(6.0, g.y_pos((2, 3)));
    }
}