pub use vecmath::row_mat2x3_mul as multiply;
pub use vecmath::vec2_dot as dot;
pub use vecmath::vec2_cross as cross;
pub use vecmath::vec2_add as add;
pub use vecmath::vec2_sub as sub;
pub use vecmath::vec2_cast as cast;
pub use vecmath::vec2_mul as mul;
pub use vecmath::vec2_scale as mul_scalar;
pub use vecmath::vec2_square_len as square_len;
pub use vecmath::row_mat2x3_transform_pos2 as transform_pos;
pub use vecmath::row_mat2x3_transform_vec2 as transform_vec;
use std::ops::{Add, Rem};
use vecmath;
use vecmath::traits::Float;
use types::{Area, Color, Line, Polygon, Ray, Rectangle, SourceRectangle, Triangle};
use modular_index::previous;
pub type Scalar = f64;
pub type Matrix2d<T = Scalar> = vecmath::Matrix2x3<T>;
pub type Vec2d<T = Scalar> = vecmath::Vector2<T>;
pub type Vec3d<T = Scalar> = vecmath::Vector3<T>;
#[inline(always)]
pub fn perp<T>(v: [T; 2]) -> [T; 2]
where T: Float
{
[-v[1], v[0]]
}
#[inline(always)]
pub fn abs_transform<T>(w: T, h: T) -> Matrix2d<T>
where T: Float
{
use vecmath::traits::{One, FromPrimitive, Zero};
let _0: T = Zero::zero();
let _1: T = One::one();
let _2: T = FromPrimitive::from_f64(2.0);
let sx = _2 / w;
let sy = -_2 / h;
[[sx, _0, -_1], [_0, sy, _1]]
}
#[inline(always)]
pub fn translate<T>(v: Vec2d<T>) -> Matrix2d<T>
where T: Float
{
use vecmath::traits::{One, Zero};
let _0: T = Zero::zero();
let _1: T = One::one();
[[_1, _0, v[0]], [_0, _1, v[1]]]
}
#[inline(always)]
pub fn rotate_radians<T>(angle: T) -> Matrix2d<T>
where T: Float
{
use vecmath::traits::Zero;
let _0 = Zero::zero();
let c = angle.cos();
let s = angle.sin();
[[c, -s, _0], [s, c, _0]]
}
#[inline(always)]
pub fn orient<T>(x: T, y: T) -> Matrix2d<T>
where T: Float
{
use vecmath::traits::Zero;
let _0: T = Zero::zero();
let len = x * x + y * y;
if len == _0 {
return identity();
}
let len = len.sqrt();
let c = x / len;
let s = y / len;
[[c, -s, _0], [s, c, _0]]
}
#[inline(always)]
pub fn scale<T>(sx: T, sy: T) -> Matrix2d<T>
where T: Float
{
use vecmath::traits::Zero;
let _0: T = Zero::zero();
[[sx, _0, _0], [_0, sy, _0]]
}
#[inline(always)]
pub fn shear<T>(v: Vec2d<T>) -> Matrix2d<T>
where T: Float
{
use vecmath::traits::{Zero, One};
let _0 = Zero::zero();
let _1 = One::one();
[[_1, v[0], _0], [v[1], _1, _0]]
}
#[inline(always)]
pub fn identity<T>() -> Matrix2d<T>
where T: Float
{
use vecmath::traits::{Zero, One};
let _0: T = Zero::zero();
let _1: T = One::one();
[[_1, _0, _0], [_0, _1, _0]]
}
#[inline(always)]
pub fn get_scale<T>(m: Matrix2d<T>) -> Vec2d<T>
where T: Float
{
[(m[0][0] * m[0][0] + m[1][0] * m[1][0]).sqrt(), (m[0][1] * m[0][1] + m[1][1] * m[1][1]).sqrt()]
}
#[inline(always)]
pub fn separation<T>(ray: Ray<T>, v: Vec2d<T>) -> Vec2d<T>
where T: Float
{
let (dir_x, dir_y) = (ray[2], ray[3]);
let (dx, dy) = (ray[0] - v[0], ray[1] - v[1]);
let dot = dir_x * v[0] + dir_y * v[1];
[dx - dot * dir_x, dy - dot * dir_y]
}
#[inline(always)]
pub fn least_separation_4<T>(sep1: Vec2d<T>,
sep2: Vec2d<T>,
sep3: Vec2d<T>,
sep4: Vec2d<T>)
-> Vec2d<T>
where T: Float
{
let dot1 = sep1[0] * sep1[0] + sep1[1] * sep1[1];
let dot2 = sep2[0] * sep2[0] + sep2[1] * sep2[1];
let dot3 = sep3[0] * sep3[0] + sep3[1] * sep3[1];
let dot4 = sep4[0] * sep4[0] + sep4[1] * sep4[1];
if dot1 < dot2 {
if dot3 < dot4 {
if dot1 < dot3 { sep1 } else { sep3 }
} else {
if dot1 < dot4 { sep1 } else { sep4 }
}
} else {
if dot3 < dot4 {
if dot2 < dot3 { sep2 } else { sep3 }
} else {
if dot2 < dot4 { sep2 } else { sep4 }
}
}
}
#[inline(always)]
pub fn margin_rectangle<T>(rect: Rectangle<T>, m: T) -> Rectangle<T>
where T: Float
{
use vecmath::traits::{Zero, FromPrimitive};
let _0: T = Zero::zero();
let _05: T = FromPrimitive::from_f64(0.5);
let _2: T = FromPrimitive::from_f64(2.0);
let w = rect[2] - _2 * m;
let h = rect[3] - _2 * m;
let (x, w) = if w < _0 {
(rect[0] + _05 * rect[2], _0)
} else {
(rect[0] + m, w)
};
let (y, h) = if h < _0 {
(rect[1] + _05 * rect[3], _0)
} else {
(rect[1] + m, h)
};
[x, y, w, h]
}
#[inline(always)]
pub fn relative_rectangle<T>(rect: Rectangle<T>, v: Vec2d<T>) -> Rectangle<T>
where T: Float
{
[rect[0] + v[0] * rect[2], rect[1] + v[1] * rect[3], rect[2], rect[3]]
}
#[inline(always)]
pub fn overlap_rectangle<T>(a: Rectangle<T>, b: Rectangle<T>) -> Option<Rectangle<T>>
where T: Float
{
#[inline(always)]
fn min<T: Float>(a: T, b: T) -> T {
if a < b { a } else { b }
}
#[inline(always)]
fn max<T: Float>(a: T, b: T) -> T {
if a > b { a } else { b }
}
if a[0] < b[0] + b[2] && a[1] < b[1] + b[3] && b[0] < a[0] + a[2] && b[1] < a[1] + a[3] {
let x = max(a[0], b[0]);
let y = max(a[1], b[1]);
let w = min(a[0] + a[2], b[0] + b[2]) - x;
let h = min(a[1] + a[3], b[1] + b[3]) - y;
Some([x, y, w, h])
} else {
None
}
}
#[cfg(test)]
mod test_overlap {
use super::overlap_rectangle;
#[test]
fn overlap() {
let a = [0.0, 1.0, 100.0, 101.0];
let b = [51.0, 52.0, 102.0, 103.0];
let c = overlap_rectangle(a, b).unwrap();
assert_eq!(c, [51.0, 52.0, 49.0, 50.0]);
let d = overlap_rectangle(a, c).unwrap();
assert_eq!(d, c);
let e = overlap_rectangle(b, c).unwrap();
assert_eq!(e, c);
}
#[test]
fn edge() {
let a = [0.0, 0.0, 100.0, 100.0];
let b = [100.0, 0.0, 100.0, 100.0];
let c = overlap_rectangle(a, b);
assert_eq!(c, None);
}
}
#[inline(always)]
pub fn relative_source_rectangle<T>(rect: SourceRectangle<T>, x: T, y: T) -> SourceRectangle<T>
where T: Float
{
let (rx, ry, rw, rh) = (rect[0], rect[1], rect[2], rect[3]);
let (x, y) = (rx + x * rw, ry + y * rh);
[x, y, rw, rh]
}
#[inline(always)]
pub fn modular_offset<T: Add<Output = T> + Rem<Output = T> + Copy>(n: &T, i: &T, off: &T) -> T {
(*i + (*off % *n + *n)) % *n
}
#[cfg(test)]
mod test_modular_offset {
use super::*;
#[test]
fn test_modular_offset() {
assert_eq!(modular_offset(&3.0_f64, &0.0_f64, &-1.0_f64), 2.0_f64);
assert_eq!(modular_offset(&3.0_f64, &1.0_f64, &-1.0_f64), 0.0_f64);
assert_eq!(modular_offset(&3.0_f64, &2.0_f64, &-1.0_f64), 1.0_f64);
assert_eq!(modular_offset(&3.0_f64, &3.0_f64, &-1.0_f64), 2.0_f64);
assert_eq!(modular_offset(&3.0_f64, &0.0_f64, &1.0_f64), 1.0_f64);
assert_eq!(modular_offset(&3.0_f64, &1.0_f64, &1.0_f64), 2.0_f64);
assert_eq!(modular_offset(&3.0_f64, &2.0_f64, &1.0_f64), 0.0_f64);
assert_eq!(modular_offset(&3.0_f64, &3.0_f64, &1.0_f64), 1.0_f64);
}
}
pub fn area_centroid<T>(polygon: Polygon<T>) -> (Area<T>, Vec2d<T>)
where T: Float
{
use vecmath::traits::{Zero, FromPrimitive};
let _0: T = Zero::zero();
let _05: T = FromPrimitive::from_f64(0.5);
let _3: T = FromPrimitive::from_f64(3.0);
let n = polygon.len();
let mut sum = _0;
let (mut cx, mut cy) = (_0, _0);
for i in 0..n {
let qx = polygon[i][0];
let qy = polygon[i][1];
let p_i = previous(n, i);
let px = polygon[p_i][0];
let py = polygon[p_i][1];
let cross = px * qy - qx * py;
cx = cx + (px + qx) * cross;
cy = cy + (py + qy) * cross;
sum = sum + cross;
}
let area = _05 * sum;
let centroid = [cx / (_3 * sum), cy / (_3 * sum)];
(area, centroid)
}
#[inline(always)]
pub fn area<T>(polygon: Polygon<T>) -> T
where T: Float
{
let (res, _) = area_centroid(polygon);
res
}
#[inline(always)]
pub fn centroid<T>(polygon: Polygon<T>) -> Vec2d<T>
where T: Float
{
let (_, res) = area_centroid(polygon);
res
}
#[inline(always)]
pub fn line_side<T>(line: Line<T>, v: Vec2d<T>) -> T
where T: Float
{
let (ax, ay) = (line[0], line[1]);
let (bx, by) = (line[2], line[3]);
(bx - ax) * (v[1] - ay) - (by - ay) * (v[0] - ax)
}
pub fn inside_triangle<T>(triangle: Triangle<T>, v: Vec2d<T>) -> bool
where T: Float
{
use vecmath::traits::Zero;
let _0: T = Zero::zero();
let ax = triangle[0][0];
let ay = triangle[0][1];
let bx = triangle[1][0];
let by = triangle[1][1];
let cx = triangle[2][0];
let cy = triangle[2][1];
let ab_side = line_side([ax, ay, bx, by], v);
let bc_side = line_side([bx, by, cx, cy], v);
let ca_side = line_side([cx, cy, ax, ay], v);
let ab_positive = ab_side >= _0;
let bc_positive = bc_side >= _0;
let ca_positive = ca_side >= _0;
ab_positive == bc_positive && bc_positive == ca_positive
}
#[inline(always)]
pub fn triangle_face<T>(triangle: Triangle<T>) -> bool
where T: Float
{
use vecmath::traits::Zero;
let _0 = Zero::zero();
let ax = triangle[0][0];
let ay = triangle[0][1];
let bx = triangle[1][0];
let by = triangle[1][1];
let cx = triangle[2][0];
let cy = triangle[2][1];
let ab_side = line_side([ax, ay, bx, by], [cx, cy]);
ab_side <= _0
}
#[cfg(test)]
mod test_triangle {
use super::*;
#[test]
fn test_triangle() {
let tri_1 = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]];
let tri_2 = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0]];
let (x, y) = (0.5, 0.25);
assert_eq!(inside_triangle(tri_1, [x, y]), true);
assert_eq!(inside_triangle(tri_2, [x, y]), true);
assert_eq!(triangle_face(tri_1), false);
assert_eq!(triangle_face(tri_2), true);
}
}
#[inline(always)]
pub fn to_barycentric<T>(triangle: Triangle<T>, pos: Vec2d<T>) -> Vec3d<T>
where T: Float
{
use vecmath::traits::One;
let _1: T = One::one();
let x = pos[0];
let y = pos[1];
let x1 = triangle[0][0];
let y1 = triangle[0][1];
let x2 = triangle[1][0];
let y2 = triangle[1][1];
let x3 = triangle[2][0];
let y3 = triangle[2][1];
let lambda1 = ((y2 - y3) * (x - x3) + (x3 - x2) * (y - y3)) /
((y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3));
let lambda2 = ((y3 - y1) * (x - x3) + (x1 - x3) * (y - y3)) /
((y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3));
let lambda3 = _1 - lambda1 - lambda2;
[lambda1, lambda2, lambda3]
}
#[inline(always)]
pub fn from_barycentric<T>(triangle: Triangle<T>, lambda: Vec3d<T>) -> Vec2d<T>
where T: Float
{
let x1 = triangle[0][0];
let y1 = triangle[0][1];
let x2 = triangle[1][0];
let y2 = triangle[1][1];
let x3 = triangle[2][0];
let y3 = triangle[2][1];
[lambda[0] * x1 + lambda[1] * x2 + lambda[2] * x3,
lambda[0] * y1 + lambda[1] * y2 + lambda[2] * y3]
}
#[cfg(test)]
mod test_barycentric {
use super::*;
#[test]
fn test_barycentric() {
let triangle = [[0.0, 0.0], [100.0, 0.0], [0.0, 50.0]];
let old_pos = [10.0, 20.0];
let b = to_barycentric(triangle, old_pos);
let new_pos: Vec2d = from_barycentric(triangle, b);
let eps = 0.00001;
assert!((new_pos[0] - old_pos[0]).abs() < eps);
assert!((new_pos[1] - old_pos[1]).abs() < eps);
}
}
#[inline(always)]
pub fn hsv(color: Color, h_rad: f32, s: f32, v: f32) -> Color {
let vsu = v * s * h_rad.cos();
let vsw = v * s * h_rad.sin();
[(0.299 * v + 0.701 * vsu + 0.168 * vsw) * color[0] +
(0.587 * v - 0.587 * vsu + 0.330 * vsw) * color[1] +
(0.114 * v - 0.114 * vsu - 0.497 * vsw) * color[2],
(0.299 * v - 0.299 * vsu - 0.328 * vsw) * color[0] +
(0.587 * v + 0.413 * vsu + 0.035 * vsw) * color[1] +
(0.114 * v - 0.114 * vsu + 0.292 * vsw) * color[2],
(0.299 * v - 0.3 * vsu + 1.25 * vsw) * color[0] +
(0.587 * v - 0.588 * vsu - 1.05 * vsw) * color[1] +
(0.114 * v + 0.886 * vsu - 0.203 * vsw) * color[2],
color[3]]
}