Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use std::io;
use std::rc::Rc;

use imp::EventQueueInner;

/// An event queue for protocol messages
///
/// Event dispatching in wayland is made on a queue basis, allowing you
/// to organize your objects into different queues that can be dispatched
/// independently, for example from different threads.
///
/// And `EventQueue` is not `Send`, and thus must stay on the thread on which
/// they were created. However the `Display` object is `Send + Sync`, allowing
/// you to create the queues directly in the threads that host them.
///
/// When a queue is dispatched (via the `dispatch()` or `dispatch_pending()` methods)
/// all the incoming messages from the server designated to objects associated with
/// the queue are processed sequentially, and the appropriate implementation for each
/// is invoked. When all messages have been processed these methods return.
///
/// There are two main ways to driving an event queue forward. The first way is the
/// simplest and generally sufficient for single-threaded apps that only process events
/// from wayland. It consists of using the `EventQueue::dispatch()` method, which will
/// take care of sending pending requests to the server, block until some events are
/// available, read them, and call the associated handlers:
///
/// ```no_run
/// # extern crate wayland_client;
/// # use wayland_client::{Display};
/// # fn main() {
/// #     let (display, mut event_queue) = Display::connect_to_env().unwrap();
/// loop {
///     // The dispatch() method returns once it has received some events to dispatch
///     // and have emptied the wayland socket from its pending messages, so it needs
///     // to be called in a loop. If this method returns an error, your connection to
///     // the wayland server is very likely dead. See its documentation for more details.
///     event_queue.dispatch().expect("An error occurred during event dispatching!");
/// }
/// # }
/// ```
///
/// The second way is more appropriate for apps that are either multithreaded (and need to process
/// wayland events from different threads conccurently) or need to react to events from different
/// sources and can't affort to just block on the wayland socket. It centers around three methods:
/// `Display::flush()`, `EventQueue::read_events()` and `EventQueue::dispatch_pending()`:
///
/// ```no_run
/// # extern crate wayland_client;
/// # use wayland_client::Display;
/// # fn main() {
/// # let (display, mut event_queue) = Display::connect_to_env().unwrap();
/// loop {
///     // The first method, called on the Display, is flush(). It writes all pending
///     // requests to the socket. Calling it ensures that the server will indeed
///     // receive your requests (so it can react to them).
///     if let Err(e) = display.flush() {
///         if e.kind() != ::std::io::ErrorKind::WouldBlock {
///             // if you are sending a realy large number of request, it might fill
///             // the internal buffers of the socket, in which case you should just
///             // retry flushing later. Other errors are a problem though.
///             eprintln!("Error while trying to flush the wayland socket: {:?}", e);
///         }
///     }
///
///     // The second method will try to read events from the socket. It is done in two
///     // steps, first the read is prepared, and then it is actually executed. This allows
///     // lower contention when different threads are trying to trigger a read of events
///     // concurently
///     if let Some(guard) = event_queue.prepare_read() {
///         // prepare_read() returns None if there are already events pending in this
///         // event queue, in which case there is no need to try to read from the socket
///         if let Err(e) = guard.read_events() {
///             if e.kind() != ::std::io::ErrorKind::WouldBlock {
///                 // if read_events() returns Err(WouldBlock), this just means that no new
///                 // messages are available to be read
///                 eprintln!("Error while trying to read from the wayland socket: {:?}", e);
///             }
///         }
///     }
///
///     // Then, once events have been read from the socket and stored in the internal
///     // queues, they need to be dispatched to their handler. Note that while flush()
///     // and read_events() are global and will affect the whole connection, this last
///     // method will only affect the event queue it is being called on. This method
///     // cannot error unless there is a bug in the server or a previous read of events
///     // already errored.
///     event_queue.dispatch_pending().expect("Failed to dispatch all messages.");
///
///     // Note that none of these methods are blocking, as such they should not be used
///     // as a loop as-is if there are no other sources of events your program is waiting on.
///
///     // The wayland socket can also be integrated in a poll-like mechanism, using
///     // either the integration with calloop provided by the "eventloop" cargo feature,
///     // or the get_connection_fd() method.
/// }
/// # }
/// ```
pub struct EventQueue {
    // EventQueue is *not* Send
    pub(crate) inner: Rc<EventQueueInner>,
}

/// A token representing this event queue
///
/// This token can be cloned and is meant to allow easier
/// interaction with other functions in the library that
/// require the specification of an event queue, like
/// `Proxy::make_wrapper` and `NewProxy::implement_nonsend`.
pub struct QueueToken {
    pub(crate) inner: Rc<EventQueueInner>,
}

impl EventQueue {
    pub(crate) fn new(inner: EventQueueInner) -> EventQueue {
        EventQueue {
            inner: Rc::new(inner),
        }
    }
    /// Dispatches events from the internal buffer.
    ///
    /// Dispatches all events to their appropriators.
    /// If no events were in the internal buffer, will block until
    /// some events are read and dispatch them.
    /// This process can insert events in the internal buffers of
    /// other event queues.
    ///
    /// If an error is returned, your connection with the wayland compositor is probably lost.
    /// You may want to check `Display::protocol_error()` to see if it was caused by a protocol error.
    pub fn dispatch(&mut self) -> io::Result<u32> {
        self.inner.dispatch()
    }

    /// Dispatches pending events from the internal buffer.
    ///
    /// Dispatches all events to their appropriators.
    /// Never blocks, if no events were pending, simply returns
    /// `Ok(0)`.
    ///
    /// If an error is returned, your connection with the wayland compositor is probably lost.
    /// You may want to check `Display::protocol_error()` to see if it was caused by a protocol error.
    pub fn dispatch_pending(&mut self) -> io::Result<u32> {
        self.inner.dispatch_pending()
    }

    /// Synchronous roundtrip
    ///
    /// This call will cause a synchronous roundtrip with the wayland server. It will block until all
    /// pending requests of this queue are sent to the server and it has processed all of them and
    /// send the appropriate events.
    ///
    /// Handlers are called as a consequence.
    ///
    /// On success returns the number of dispatched events.
    /// If an error is returned, your connection with the wayland compositor is probably lost.
    /// You may want to check `Display::protocol_error()` to see if it was caused by a protocol error.
    pub fn sync_roundtrip(&mut self) -> io::Result<u32> {
        self.inner.sync_roundtrip()
    }

    /// Create a new token associated with this event queue
    ///
    /// See `QueueToken` documentation for its use.
    pub fn get_token(&self) -> QueueToken {
        QueueToken {
            inner: self.inner.clone(),
        }
    }

    /// Prepare an concurrent read
    ///
    /// Will declare your intention to read events from the server socket.
    ///
    /// Will return `None` if there are still some events awaiting dispatch on this EventIterator.
    /// In this case, you need to call `dispatch_pending()` before calling this method again.
    ///
    /// As long as the returned guard is in scope, no events can be dispatched to any event iterator.
    ///
    /// The guard can then be destroyed by two means:
    ///
    ///  - Calling its `cancel()` method (or letting it go out of scope): the read intention will
    ///    be cancelled
    ///  - Calling its `read_events()` method: will block until all existing guards are destroyed
    ///    by one of these methods, then events will be read and all blocked `read_events()` calls
    ///    will return.
    ///
    /// This call will otherwise not block on the server socket if it is empty, and return
    /// an io error `WouldBlock` in such cases.
    pub fn prepare_read(&self) -> Option<ReadEventsGuard> {
        match self.inner.prepare_read() {
            Ok(()) => Some(ReadEventsGuard {
                inner: self.inner.clone(),
                done: false,
            }),
            Err(()) => None,
        }
    }

    /// Retrieve the file descriptor associated with the wayland socket
    ///
    /// This FD should only be used to integrate into a polling mechanism, and should
    /// never be directly read from or written to.
    pub fn get_connection_fd(&self) -> ::std::os::unix::io::RawFd {
        self.inner.get_connection_fd()
    }
}

/// A guard over a read intention.
///
/// See `EventQueue::prepare_read()` for details about its use.
pub struct ReadEventsGuard {
    inner: Rc<EventQueueInner>,
    done: bool,
}

impl ReadEventsGuard {
    /// Read events
    ///
    /// Reads events from the server socket. If other `ReadEventsGuard` exists, will block
    /// until they are all consumed or destroyed.
    pub fn read_events(mut self) -> io::Result<i32> {
        self.done = true;
        self.inner.read_events()
    }

    /// Cancel the read
    ///
    /// Will cancel the read intention associated with this guard. Never blocks.
    ///
    /// Has the same effect as letting the guard go out of scope.
    pub fn cancel(mut self) {
        // just run the destructor
        self.done = true;
    }
}

impl Drop for ReadEventsGuard {
    fn drop(&mut self) {
        if !self.done {
            self.inner.cancel_read();
        }
    }
}