Struct gfx::device::mapping::RW [] [src]

pub struct RW<'a, T: Copy, R: 'a + Resources, F: 'a + Factory<R>> where F: 'a {
    // some fields omitted
}

A handle to a complete readable/writable map, which can be sliced both ways.

Methods from Deref<Target=[T]>

fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering

Sorts the slice, in place, using compare to compare elements.

This sort is O(n log n) worst-case and stable, but allocates approximately 2 * n, where n is the length of self.

Examples

let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

fn move_from(&mut self, src: Vec<T>, start: usize, end: usize) -> usize

Unstable

: uncertain about this API approach

Consumes src and moves as many elements as it can into self from the range [start,end).

Returns the number of elements copied (the shorter of self.len() and end - start).

Arguments

  • src - A mutable vector of T
  • start - The index into src to start copying from
  • end - The index into src to stop copying from

Examples

let mut a = [1, 2, 3, 4, 5];
let b = vec![6, 7, 8];
let num_moved = a.move_from(b, 0, 3);
assert_eq!(num_moved, 3);
assert!(a == [6, 7, 8, 4, 5]);

fn split_at(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics if mid > len.

Examples

let v = [10, 40, 30, 20, 50];
let (v1, v2) = v.split_at(2);
assert_eq!([10, 40], v1);
assert_eq!([30, 20, 50], v2);

fn iter(&self) -> Iter<T>

Returns an iterator over the slice.

fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

Print the slice split by numbers divisible by 3 (i.e. [10, 40], [20], [50]):

let v = [10, 40, 30, 20, 60, 50];
for group in v.split(|num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn windows(&self, size: usize) -> Windows<T>

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Example

Print the adjacent pairs of a slice (i.e. [1,2], [2,3], [3,4]):

let v = &[1, 2, 3, 4];
for win in v.windows(2) {
    println!("{:?}", win);
}

fn chunks(&self, size: usize) -> Chunks<T>

Returns an iterator over size elements of the slice at a time. The chunks do not overlap. If size does not divide the length of the slice, then the last chunk will not have length size.

Panics

Panics if size is 0.

Example

Print the slice two elements at a time (i.e. [1,2], [3,4], [5]):

let v = &[1, 2, 3, 4, 5];
for win in v.chunks(2) {
    println!("{:?}", win);
}

fn get(&self, index: usize) -> Option<&T>

Returns the element of a slice at the given index, or None if the index is out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(None, v.get(3));

fn first(&self) -> Option<&T>

Returns the first element of a slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

fn tail(&self) -> &[T]

Unstable

: likely to be renamed

Returns all but the first element of a slice.

fn init(&self) -> &[T]

Unstable

: likely to be renamed

Returns all but the last element of a slice.

fn last(&self) -> Option<&T>

Returns the last element of a slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

unsafe fn get_unchecked(&self, index: usize) -> &T

Returns a pointer to the element at the given index, without doing bounds checking.

fn as_ptr(&self) -> *const T

Returns an unsafe pointer to the slice's buffer

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering

Binary search a sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

fn len(&self) -> usize

Returns the number of elements in the slice.

Example

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool

Returns true if the slice has a length of 0

Example

let a = [1, 2, 3];
assert!(!a.is_empty());

fn get_mut(&mut self, index: usize) -> Option<&mut T>

Returns a mutable reference to the element at the given index, or None if the index is out of bounds

fn iter_mut(&mut self) -> IterMut<T>

Returns an iterator that allows modifying each value

fn first_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the first element of a slice, or None if it is empty

fn tail_mut(&mut self) -> &mut [T]

Unstable

: likely to be renamed or removed

Returns all but the first element of a mutable slice

fn init_mut(&mut self) -> &mut [T]

Unstable

: likely to be renamed or removed

Returns all but the last element of a mutable slice

fn last_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the last item in the slice.

fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

Panics

Panics if chunk_size is 0.

fn swap(&mut self, a: usize, b: usize)

Swaps two elements in a slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Example

let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

Divides one &mut into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Example

let mut v = [1, 2, 3, 4, 5, 6];

// scoped to restrict the lifetime of the borrows
{
   let (left, right) = v.split_at_mut(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

fn reverse(&mut self)

Reverse the order of elements in a slice, in place.

Example

let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T

Returns an unsafe mutable pointer to the element in index

fn as_mut_ptr(&mut self) -> *mut T

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

fn to_vec(&self) -> Vec<T> where T: Clone

Copies self into a new Vec.

fn permutations(&self) -> Permutations<T> where T: Clone

Unstable

Creates an iterator that yields every possible permutation of the vector in succession.

Examples

let v = [1, 2, 3];
let mut perms = v.permutations();

for p in perms {
  println!("{:?}", p);
}

Iterating through permutations one by one.

let v = [1, 2, 3];
let mut perms = v.permutations();

assert_eq!(Some(vec![1, 2, 3]), perms.next());
assert_eq!(Some(vec![1, 3, 2]), perms.next());
assert_eq!(Some(vec![3, 1, 2]), perms.next());

fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone

Unstable

Copies as many elements from src as it can into self (the shorter of self.len() and src.len()). Returns the number of elements copied.

Example

let mut dst = [0, 0, 0];
let src = [1, 2];

assert!(dst.clone_from_slice(&src) == 2);
assert!(dst == [1, 2, 0]);

let src2 = [3, 4, 5, 6];
assert!(dst.clone_from_slice(&src2) == 3);
assert!(dst == [3, 4, 5]);

fn sort(&mut self) where T: Ord

Sorts the slice, in place.

This is equivalent to self.sort_by(|a, b| a.cmp(b)).

Examples

let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

Binary search a sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

fn next_permutation(&mut self) -> bool where T: Ord

Unstable

: uncertain if this merits inclusion in std

Mutates the slice to the next lexicographic permutation.

Returns true if successful and false if the slice is at the last-ordered permutation.

Example

let v: &mut [_] = &mut [0, 1, 2];
v.next_permutation();
let b: &mut [_] = &mut [0, 2, 1];
assert!(v == b);
v.next_permutation();
let b: &mut [_] = &mut [1, 0, 2];
assert!(v == b);

fn prev_permutation(&mut self) -> bool where T: Ord

Unstable

: uncertain if this merits inclusion in std

Mutates the slice to the previous lexicographic permutation.

Returns true if successful and false if the slice is at the first-ordered permutation.

Example

let v: &mut [_] = &mut [1, 0, 2];
v.prev_permutation();
let b: &mut [_] = &mut [0, 2, 1];
assert!(v == b);
v.prev_permutation();
let b: &mut [_] = &mut [0, 1, 2];
assert!(v == b);

fn position_elem(&self, t: &T) -> Option<usize> where T: PartialEq<T>

Unstable

Find the first index containing a matching value.

fn rposition_elem(&self, t: &T) -> Option<usize> where T: PartialEq<T>

Unstable

Find the last index containing a matching value.

fn contains(&self, x: &T) -> bool where T: PartialEq<T>

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

fn into_vec(self: Box<[T]>) -> Vec<T>

Converts self into a vector without clones or allocation.

Trait Implementations

impl<'a, T: Copy, R: Resources, F: Factory<R>> Deref for RW<'a, T, R, F> where F: 'a

type Target = [T]

fn deref(&self) -> &[T]

impl<'a, T: Copy, R: Resources, F: Factory<R>> DerefMut for RW<'a, T, R, F> where F: 'a

fn deref_mut(&mut self) -> &mut [T]

impl<'a, T: Copy, R: Resources, F: Factory<R>> Drop for RW<'a, T, R, F> where F: 'a

fn drop(&mut self)