Struct gfx::device::mapping::Readable
[−]
[src]
pub struct Readable<'a, T: Copy, R: 'a + Resources, F: 'a + Factory<R>> where F: 'a {
// some fields omitted
}
A handle to a readable map, which can be sliced.
Methods from Deref<Target=[T]>
fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
Sorts the slice, in place, using compare
to compare
elements.
This sort is O(n log n)
worst-case and stable, but allocates
approximately 2 * n
, where n
is the length of self
.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
fn move_from(&mut self, src: Vec<T>, start: usize, end: usize) -> usize
: uncertain about this API approach
Consumes src
and moves as many elements as it can into self
from the range [start,end).
Returns the number of elements copied (the shorter of self.len()
and end - start
).
Arguments
- src - A mutable vector of
T
- start - The index into
src
to start copying from - end - The index into
src
to stop copying from
Examples
let mut a = [1, 2, 3, 4, 5]; let b = vec![6, 7, 8]; let num_moved = a.move_from(b, 0, 3); assert_eq!(num_moved, 3); assert!(a == [6, 7, 8, 4, 5]);
fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics if mid > len
.
Examples
let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);
fn iter(&self) -> Iter<T>
Returns an iterator over the slice.
fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
Print the slice split by numbers divisible by 3 (i.e. [10, 40]
,
[20]
, [50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); }
fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn windows(&self, size: usize) -> Windows<T>
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Example
Print the adjacent pairs of a slice (i.e. [1,2]
, [2,3]
,
[3,4]
):
let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); }
fn chunks(&self, size: usize) -> Chunks<T>
Returns an iterator over size
elements of the slice at a
time. The chunks do not overlap. If size
does not divide the
length of the slice, then the last chunk will not have length
size
.
Panics
Panics if size
is 0.
Example
Print the slice two elements at a time (i.e. [1,2]
,
[3,4]
, [5]
):
let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); }
fn get(&self, index: usize) -> Option<&T>
Returns the element of a slice at the given index, or None
if the
index is out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3));
fn first(&self) -> Option<&T>
Returns the first element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
fn tail(&self) -> &[T]
: likely to be renamed
Returns all but the first element of a slice.
fn init(&self) -> &[T]
: likely to be renamed
Returns all but the last element of a slice.
fn last(&self) -> Option<&T>
Returns the last element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
unsafe fn get_unchecked(&self, index: usize) -> &T
Returns a pointer to the element at the given index, without doing bounds checking.
fn as_ptr(&self) -> *const T
Returns an unsafe pointer to the slice's buffer
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering
Binary search a sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
fn len(&self) -> usize
fn is_empty(&self) -> bool
fn get_mut(&mut self, index: usize) -> Option<&mut T>
Returns a mutable reference to the element at the given index,
or None
if the index is out of bounds
fn iter_mut(&mut self) -> IterMut<T>
Returns an iterator that allows modifying each value
fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of a slice, or None
if it is empty
fn tail_mut(&mut self) -> &mut [T]
: likely to be renamed or removed
Returns all but the first element of a mutable slice
fn init_mut(&mut self) -> &mut [T]
: likely to be renamed or removed
Returns all but the last element of a mutable slice
fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the last item in the slice.
fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not
have length chunk_size
.
Panics
Panics if chunk_size
is 0.
fn swap(&mut self, a: usize, b: usize)
Swaps two elements in a slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Example
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one &mut
into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Example
let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
fn reverse(&mut self)
Reverse the order of elements in a slice, in place.
Example
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
Returns an unsafe mutable pointer to the element in index
fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
fn to_vec(&self) -> Vec<T> where T: Clone
Copies self
into a new Vec
.
fn permutations(&self) -> Permutations<T> where T: Clone
Creates an iterator that yields every possible permutation of the vector in succession.
Examples
let v = [1, 2, 3]; let mut perms = v.permutations(); for p in perms { println!("{:?}", p); }
Iterating through permutations one by one.
let v = [1, 2, 3]; let mut perms = v.permutations(); assert_eq!(Some(vec![1, 2, 3]), perms.next()); assert_eq!(Some(vec![1, 3, 2]), perms.next()); assert_eq!(Some(vec![3, 1, 2]), perms.next());
fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone
Copies as many elements from src
as it can into self
(the
shorter of self.len()
and src.len()
). Returns the number
of elements copied.
Example
let mut dst = [0, 0, 0]; let src = [1, 2]; assert!(dst.clone_from_slice(&src) == 2); assert!(dst == [1, 2, 0]); let src2 = [3, 4, 5, 6]; assert!(dst.clone_from_slice(&src2) == 3); assert!(dst == [3, 4, 5]);
fn sort(&mut self) where T: Ord
Sorts the slice, in place.
This is equivalent to self.sort_by(|a, b| a.cmp(b))
.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);
fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord
Binary search a sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
fn next_permutation(&mut self) -> bool where T: Ord
: uncertain if this merits inclusion in std
Mutates the slice to the next lexicographic permutation.
Returns true
if successful and false
if the slice is at the
last-ordered permutation.
Example
let v: &mut [_] = &mut [0, 1, 2]; v.next_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.next_permutation(); let b: &mut [_] = &mut [1, 0, 2]; assert!(v == b);
fn prev_permutation(&mut self) -> bool where T: Ord
: uncertain if this merits inclusion in std
Mutates the slice to the previous lexicographic permutation.
Returns true
if successful and false
if the slice is at the
first-ordered permutation.
Example
let v: &mut [_] = &mut [1, 0, 2]; v.prev_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.prev_permutation(); let b: &mut [_] = &mut [0, 1, 2]; assert!(v == b);
fn position_elem(&self, t: &T) -> Option<usize> where T: PartialEq<T>
Find the first index containing a matching value.
fn rposition_elem(&self, t: &T) -> Option<usize> where T: PartialEq<T>
Find the last index containing a matching value.
fn contains(&self, x: &T) -> bool where T: PartialEq<T>
Returns true if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
Returns true if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
Returns true if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
fn into_vec(self: Box<[T]>) -> Vec<T>
Converts self
into a vector without clones or allocation.