1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
// Copyright 2015 The Gfx-rs Developers. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #![deny(missing_docs)] //! Low-level graphics abstraction for Rust. Mostly operates on data, not types. //! Designed for use by libraries and higher-level abstractions only. #[macro_use] extern crate bitflags; extern crate draw_state; extern crate log; #[cfg(feature = "mint")] extern crate mint; #[cfg(feature = "serialize")] #[macro_use] extern crate serde; use std::fmt::{self, Debug}; use std::error::Error; use std::hash::Hash; use std::any::Any; pub use draw_state::{state, target}; pub use self::factory::Factory; pub mod buffer; pub mod command; pub mod dummy; pub mod factory; pub mod format; pub mod handle; pub mod mapping; pub mod memory; pub mod pso; pub mod shade; pub mod texture; /// Compile-time maximum number of vertex attributes. pub const MAX_VERTEX_ATTRIBUTES: usize = 16; /// Compile-time maximum number of color targets. pub const MAX_COLOR_TARGETS: usize = 4; /// Compile-time maximum number of constant buffers. pub const MAX_CONSTANT_BUFFERS: usize = 14; /// Compile-time maximum number of shader resource views (SRV). pub const MAX_RESOURCE_VIEWS: usize = 32; /// Compile-time maximum number of unordered access views (UAV). pub const MAX_UNORDERED_VIEWS: usize = 4; /// Compile-time maximum number of samplers. pub const MAX_SAMPLERS: usize = 16; /// Draw vertex count. pub type VertexCount = u32; /// Draw number of instances pub type InstanceCount = u32; /// Number of vertices in a patch pub type PatchSize = u8; /// Slot for an attribute. pub type AttributeSlot = u8; /// Slot for a constant buffer object. pub type ConstantBufferSlot = u8; /// Slot for a shader resource view. pub type ResourceViewSlot = u8; /// Slot for an unordered access object. pub type UnorderedViewSlot = u8; /// Slot for an active color buffer. pub type ColorSlot = u8; /// Slot for a sampler. pub type SamplerSlot = u8; macro_rules! define_shaders { ( $($name:ident),+ ) => { $( #[allow(missing_docs)] #[derive(Clone, Debug, Eq, Hash, PartialEq)] pub struct $name<R: Resources>(handle::Shader<R>); impl<R: Resources> $name<R> { #[allow(missing_docs)] pub fn reference(&self, man: &mut handle::Manager<R>) -> &R::Shader { man.ref_shader(&self.0) } #[doc(hidden)] pub fn new(shader: handle::Shader<R>) -> Self { $name(shader) } } )+ } } define_shaders!(VertexShader, HullShader, DomainShader, GeometryShader, PixelShader); /// A complete set of shaders to link a program. TODO: TransformFeedback #[derive(Clone, Debug, Eq, Hash, PartialEq)] pub enum ShaderSet<R: Resources> { /// Simple program: Vs-Ps Simple(VertexShader<R>, PixelShader<R>), /// Geometry shader programs: Vs-Gs-Ps Geometry(VertexShader<R>, GeometryShader<R>, PixelShader<R>), /// Tessellation programs: Vs-Hs-Ds-Ps Tessellated(VertexShader<R>, HullShader<R>, DomainShader<R>, PixelShader<R>), /// TessellatedGeometry programs: Vs-Hs-Ds-Hs-Ps TessellatedGeometry(VertexShader<R>, HullShader<R>, DomainShader<R>, GeometryShader<R>, PixelShader<R>), } impl<R: Resources> ShaderSet<R> { /// Return the aggregated stage usage for the set. pub fn get_usage(&self) -> shade::Usage { use shade::Usage; match *self { ShaderSet::Simple(..) => Usage::VERTEX | Usage::PIXEL, ShaderSet::Geometry(..) => Usage::VERTEX | Usage::GEOMETRY | Usage::PIXEL, ShaderSet::Tessellated(..) => Usage::VERTEX | Usage::HULL | Usage::DOMAIN | Usage::PIXEL, ShaderSet::TessellatedGeometry(..) => Usage::VERTEX | Usage::HULL | Usage::DOMAIN | Usage::GEOMETRY | Usage::PIXEL, } } } //TODO: use the appropriate units for max vertex count, etc /// Features that the device supports. #[allow(missing_docs)] // pretty self-explanatory fields! #[derive(Clone, Copy, Debug, Eq, PartialEq)] #[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))] pub struct Capabilities { pub max_vertex_count: usize, pub max_index_count: usize, pub max_texture_size: usize, pub max_patch_size: usize, pub instance_base_supported: bool, pub instance_call_supported: bool, pub instance_rate_supported: bool, pub vertex_base_supported: bool, pub srgb_color_supported: bool, pub constant_buffer_supported: bool, pub unordered_access_view_supported: bool, pub separate_blending_slots_supported: bool, pub copy_buffer_supported: bool, } /// Describes what geometric primitives are created from vertex data. #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)] #[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))] #[repr(u8)] pub enum Primitive { /// Each vertex represents a single point. PointList, /// Each pair of vertices represent a single line segment. For example, with `[a, b, c, d, /// e]`, `a` and `b` form a line, `c` and `d` form a line, and `e` is discarded. LineList, /// Every two consecutive vertices represent a single line segment. Visually forms a "path" of /// lines, as they are all connected. For example, with `[a, b, c]`, `a` and `b` form a line /// line, and `b` and `c` form a line. LineStrip, /// Each triplet of vertices represent a single triangle. For example, with `[a, b, c, d, e]`, /// `a`, `b`, and `c` form a triangle, `d` and `e` are discarded. TriangleList, /// Every three consecutive vertices represent a single triangle. For example, with `[a, b, c, /// d]`, `a`, `b`, and `c` form a triangle, and `b`, `c`, and `d` form a triangle. TriangleStrip, /// Each quadtruplet of vertices represent a single line segment with adjacency information. /// For example, with `[a, b, c, d]`, `b` and `c` form a line, and `a` and `d` are the adjacent /// vertices. LineListAdjacency, /// Every four consecutive vertices represent a single line segment with adjacency information. /// For example, with `[a, b, c, d, e]`, `[a, b, c, d]` form a line segment with adjacency, and /// `[b, c, d, e]` form a line segment with adjacency. LineStripAdjacency, /// Each sextuplet of vertices represent a single traingle with adjacency information. For /// example, with `[a, b, c, d, e, f]`, `a`, `c`, and `e` form a traingle, and `b`, `d`, and /// `f` are the adjacent vertices, where `b` is adjacent to the edge formed by `a` and `c`, `d` /// is adjacent to the edge `c` and `e`, and `f` is adjacent to the edge `e` and `a`. TriangleListAdjacency, /// Every even-numbered vertex (every other starting from the first) represents an additional /// vertex for the triangle strip, while odd-numbered vertices (every other starting from the /// second) represent adjacent vertices. For example, with `[a, b, c, d, e, f, g, h]`, `[a, c, /// e, g]` form a triangle strip, and `[b, d, f, h]` are the adjacent vertices, where `b`, `d`, /// and `f` are adjacent to the first triangle in the strip, and `d`, `f`, and `h` are adjacent /// to the second. TriangleStripAdjacency, /// Patch list, /// used with shaders capable of producing primitives on their own (tessellation) PatchList(PatchSize), } /// A type of each index value in the slice's index buffer #[allow(missing_docs)] #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] #[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))] #[repr(u8)] pub enum IndexType { U16, U32, } /// Different types of a specific API. #[allow(missing_docs)] pub trait Resources: Clone + Hash + Debug + Eq + PartialEq + Any { type Buffer: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync + Copy; type Shader: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync; type Program: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync; type PipelineStateObject: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync; type Texture: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync; type ShaderResourceView: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync + Copy; type UnorderedAccessView: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync + Copy; type RenderTargetView: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync + Copy; type DepthStencilView: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync; type Sampler: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync + Copy; type Fence: Clone + Hash + Debug + Eq + PartialEq + Any + Send + Sync; type Mapping: Hash + Debug + Eq + PartialEq + Any + Send + Sync + mapping::Gate<Self>; } #[allow(missing_docs)] #[derive(Clone, Debug, PartialEq)] #[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))] pub enum SubmissionError { AccessOverlap, } impl fmt::Display for SubmissionError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::SubmissionError::*; match *self { AccessOverlap => write!(f, "{}", self.description()), } } } impl Error for SubmissionError { fn description(&self) -> &str { use self::SubmissionError::*; match *self { AccessOverlap => "A resource access overlaps with another" } } } #[allow(missing_docs)] pub type SubmissionResult<T> = Result<T, SubmissionError>; /// A `Device` is responsible for submitting `CommandBuffer`s to the GPU. pub trait Device: Sized { /// Associated `Resources` type. type Resources: Resources; /// Associated `CommandBuffer` type. Every `Device` type can only work with one `CommandBuffer` /// type. type CommandBuffer: command::Buffer<Self::Resources>; /// Returns the capabilities of this `Device`. fn get_capabilities(&self) -> &Capabilities; /// Pin everything from this handle manager to live for a frame. fn pin_submitted_resources(&mut self, &handle::Manager<Self::Resources>); /// Submits a `CommandBuffer` to the GPU for execution. fn submit(&mut self, &mut Self::CommandBuffer, access: &command::AccessInfo<Self::Resources>) -> SubmissionResult<()>; /// Submits a `CommandBuffer` to the GPU for execution. /// returns a fence that is signaled after the GPU has executed all commands fn fenced_submit(&mut self, &mut Self::CommandBuffer, access: &command::AccessInfo<Self::Resources>, after: Option<handle::Fence<Self::Resources>>) -> SubmissionResult<handle::Fence<Self::Resources>>; /// Stalls the current thread until the fence is satisfied fn wait_fence(&mut self, &handle::Fence<Self::Resources>); /// Cleanup unused resources. This should be called between frames. fn cleanup(&mut self); } /// Represents a physical or virtual device, which is capable of running the backend. pub trait Adapter: Sized { /// Associated `CommandQueue` type. type CommandQueue: CommandQueue; /// Associated `Device` type. type Device: Device; /// Associated `QueueFamily` type. type QueueFamily: QueueFamily; /// Enumerate all available adapters supporting this backend fn enumerate_adapters() -> Vec<Self>; /// Create a new device and command queues. fn open<'a, I>(&self, queue_descs: I) -> (Self::Device, Vec<Self::CommandQueue>) where I: Iterator<Item=(&'a Self::QueueFamily, u32)>; /// Get the `AdapterInfo` for this adapater. fn get_info(&self) -> &AdapterInfo; /// Return the supported queue families for this adapter. fn get_queue_families(&self) -> &[Self::QueueFamily]; } /// Information about a backend adapater. #[derive(Clone, Debug, Eq, PartialEq)] #[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))] pub struct AdapterInfo { /// Adapter name pub name: String, /// Vendor PCI id of the adapter pub vendor: usize, /// PCI id of the adapter pub device: usize, /// The device is based on a software rasterizer pub software_rendering: bool, } /// `QueueFamily` denotes a group of command queues provided by the backend /// with the same properties/type. pub trait QueueFamily: 'static { /// Associated `Surface` type. type Surface: Surface; /// Check if the queue family supports presentation to a surface fn supports_present(&self, surface: &Self::Surface) -> bool; /// Return the number of available queues of this family // TODO: some backends like d3d12 support infinite software queues (verify) fn num_queues(&self) -> u32; } /// Dummy trait for command queues. /// CommandBuffers will be later submitted to command queues instead of the device. pub trait CommandQueue { } /// A `Surface` abstracts the surface of a native window, which will be presented pub trait Surface { /// Associated `CommandQueue` type. type CommandQueue: CommandQueue; /// Associated `SwapChain` type. type SwapChain: SwapChain; /// Associated native `Window` type. type Window; /// Create a new surface from a native window. fn from_window(window: &Self::Window) -> Self; /// Create a new swapchain from the current surface with an associated present queue. fn build_swapchain<T: format::RenderFormat>(&self, present_queue: &Self::CommandQueue) -> Self::SwapChain; } /// Handle to a backbuffer of the swapchain. #[derive(Clone, Debug)] #[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))] pub struct Frame(usize); impl Frame { #[doc(hidden)] pub fn new(id: usize) -> Self { Frame(id) } } /// The `SwapChain` is the backend representation of the surface. /// It consists of multiple buffers, which will be presented on the surface. pub trait SwapChain { /// Acquire a new frame for rendering. This needs to be called before presenting. fn acquire_frame(&mut self) -> Frame; /// Present one acquired frame in FIFO order. fn present(&mut self); }