Files
ab_glyph_rasterizer
adler
adler32
andrew
bitflags
bytemuck
byteorder
calloop
cfg_if
color_quant
crc32fast
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
deflate
dlib
downcast_rs
draw_state
either
event_loop
float
fnv
gfx
gfx_core
gfx_device_gl
gfx_gl
gfx_graphics
gfx_texture
gif
gl
glutin
glutin_egl_sys
glutin_glx_sys
glutin_window
graphics
graphics_api_version
image
input
instant
interpolation
iovec
jpeg_decoder
lazy_static
lazycell
libc
libloading
lock_api
log
maybe_uninit
memchr
memmap2
memoffset
miniz_oxide
mio
mio_extras
net2
nix
nom
num_cpus
num_integer
num_iter
num_rational
num_traits
once_cell
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
piston
piston_window
png
proc_macro2
quote
raw_window_handle
rayon
rayon_core
read_color
rusttype
same_file
scoped_threadpool
scoped_tls
scopeguard
serde
serde_derive
shader_version
shaders_graphics2d
colored
textured
textured_color
shared_library
slab
smallvec
smithay_client_toolkit
spin_sleep
syn
texture
tiff
ttf_parser
unicode_xid
vecmath
viewport
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
weezl
window
winit
x11_dl
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
//! An MPSC channel whose receiving end is an event source
//!
//! Create a channel using `Channel::<T>::new()`, which returns a
//! `Sender<T>` that can be cloned and sent accross threads if `T: Send`,
//! and a `Channel<T>` that can be inserted into an `EventLoop`. It will generate
//! one event per message.

use std::sync::mpsc;

use crate::{EventSource, Poll, Readiness, Token};

use super::ping::{make_ping, Ping, PingSource};

/// The events generated by the channel event source
pub enum Event<T> {
    /// A message was received and is bundled here
    Msg(T),
    /// The channel was closed
    ///
    /// This means all the `Sender`s associated with this channel
    /// have been dropped, no more messages will ever be received.
    Closed,
}

/// The sender end of a channel
///
/// It can be cloned and sent accross threads (if `T` is).
pub struct Sender<T> {
    sender: mpsc::Sender<T>,
    ping: Ping,
}

#[cfg(not(tarpaulin_include))]
impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        Sender {
            sender: self.sender.clone(),
            ping: self.ping.clone(),
        }
    }
}

impl<T> Sender<T> {
    /// Send a message to the channel
    ///
    /// This will wake the event loop and deliver an `Event::Msg` to
    /// it containing the provided value.
    pub fn send(&self, t: T) -> Result<(), mpsc::SendError<T>> {
        self.sender.send(t).map(|()| self.ping.ping())
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        // ping on drop, to notify about channel closure
        self.ping.ping();
    }
}

/// The sender end of a synchronous channel
///
/// It can be cloned and sent accross threads (if `T` is).
pub struct SyncSender<T> {
    sender: mpsc::SyncSender<T>,
    ping: Ping,
}

#[cfg(not(tarpaulin_include))]
impl<T> Clone for SyncSender<T> {
    fn clone(&self) -> SyncSender<T> {
        SyncSender {
            sender: self.sender.clone(),
            ping: self.ping.clone(),
        }
    }
}

impl<T> SyncSender<T> {
    /// Send a message to the synchronous channel
    ///
    /// This will wake the event loop and deliver an `Event::Msg` to
    /// it containing the provided value. If the channel is full, this
    /// function will block until the event loop empties it and it can
    /// deliver the message.
    ///
    /// Due to the blocking behavior, this method should not be used on the
    /// same thread as the one running the event loop, as it could cause deadlocks.
    pub fn send(&self, t: T) -> Result<(), mpsc::SendError<T>> {
        let ret = self.try_send(t);
        match ret {
            Ok(()) => Ok(()),
            Err(mpsc::TrySendError::Full(t)) => self.sender.send(t).map(|()| self.ping.ping()),
            Err(mpsc::TrySendError::Disconnected(t)) => Err(mpsc::SendError(t)),
        }
    }

    /// Send a message to the synchronous channel
    ///
    /// This will wake the event loop and deliver an `Event::Msg` to
    /// it containing the provided value. If the channel is full, this
    /// function will return an error, but the event loop will still be
    /// signaled for readiness.
    pub fn try_send(&self, t: T) -> Result<(), mpsc::TrySendError<T>> {
        let ret = self.sender.try_send(t);
        if let Ok(()) | Err(mpsc::TrySendError::Full(_)) = ret {
            self.ping.ping();
        }
        ret
    }
}

/// The receiving end of the channel
///
/// This is the event source to be inserted into your `EventLoop`.
pub struct Channel<T> {
    receiver: mpsc::Receiver<T>,
    source: PingSource,
}

// This impl is safe because the Channel is only able to move around threads
// when it is not inserted into an event loop. (Otherwise it is stuck into
// a Source<_> and the internals of calloop, which are not Send).
// At this point, the Arc<Receiver> has a count of 1, and it is obviously
// safe to Send between threads.
unsafe impl<T: Send> Send for Channel<T> {}

/// Create a new asynchronous channel
pub fn channel<T>() -> (Sender<T>, Channel<T>) {
    let (sender, receiver) = mpsc::channel();
    let (ping, source) = make_ping().expect("Failed to create a Ping.");
    (Sender { sender, ping }, Channel { receiver, source })
}

/// Create a new synchronous, bounded channel
pub fn sync_channel<T>(bound: usize) -> (SyncSender<T>, Channel<T>) {
    let (sender, receiver) = mpsc::sync_channel(bound);
    let (ping, source) = make_ping().expect("Failed to create a Ping.");
    (SyncSender { sender, ping }, Channel { receiver, source })
}

impl<T: 'static> EventSource for Channel<T> {
    type Event = Event<T>;
    type Metadata = ();
    type Ret = ();

    fn process_events<C>(
        &mut self,
        readiness: Readiness,
        token: Token,
        mut callback: C,
    ) -> std::io::Result<()>
    where
        C: FnMut(Self::Event, &mut Self::Metadata) -> Self::Ret,
    {
        let receiver = &self.receiver;
        self.source
            .process_events(readiness, token, |(), &mut ()| loop {
                match receiver.try_recv() {
                    Ok(val) => callback(Event::Msg(val), &mut ()),
                    Err(mpsc::TryRecvError::Empty) => break,
                    Err(mpsc::TryRecvError::Disconnected) => {
                        callback(Event::Closed, &mut ());
                        break;
                    }
                }
            })
    }

    fn register(&mut self, poll: &mut Poll, token: Token) -> std::io::Result<()> {
        self.source.register(poll, token)
    }

    fn reregister(&mut self, poll: &mut Poll, token: Token) -> std::io::Result<()> {
        self.source.reregister(poll, token)
    }

    fn unregister(&mut self, poll: &mut Poll) -> std::io::Result<()> {
        self.source.unregister(poll)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn basic_channel() {
        let mut event_loop = crate::EventLoop::new().unwrap();

        let handle = event_loop.handle();

        let (tx, rx) = channel::<()>();

        // (got_msg, got_closed)
        let mut got = (false, false);

        let _source = handle
            .insert_source(rx, move |evt, &mut (), got: &mut (bool, bool)| match evt {
                Event::Msg(()) => {
                    got.0 = true;
                }
                Event::Closed => {
                    got.1 = true;
                }
            })
            .map_err(Into::<std::io::Error>::into)
            .unwrap();

        // nothing is sent, nothing is received
        event_loop
            .dispatch(Some(::std::time::Duration::from_millis(0)), &mut got)
            .unwrap();

        assert_eq!(got, (false, false));

        // a message is send
        tx.send(()).unwrap();
        event_loop
            .dispatch(Some(::std::time::Duration::from_millis(0)), &mut got)
            .unwrap();

        assert_eq!(got, (true, false));

        // the sender is dropped
        ::std::mem::drop(tx);
        event_loop
            .dispatch(Some(::std::time::Duration::from_millis(0)), &mut got)
            .unwrap();

        assert_eq!(got, (true, true));
    }

    #[test]
    fn basic_sync_channel() {
        let mut event_loop = crate::EventLoop::new().unwrap();

        let handle = event_loop.handle();

        let (tx, rx) = sync_channel::<()>(2);

        let mut received = (0, false);

        let _source = handle
            .insert_source(
                rx,
                move |evt, &mut (), received: &mut (u32, bool)| match evt {
                    Event::Msg(()) => {
                        received.0 += 1;
                    }
                    Event::Closed => {
                        received.1 = true;
                    }
                },
            )
            .map_err(Into::<std::io::Error>::into)
            .unwrap();

        // nothing is sent, nothing is received
        event_loop
            .dispatch(Some(::std::time::Duration::from_millis(0)), &mut received)
            .unwrap();

        assert_eq!(received.0, 0);
        assert!(!received.1);

        // fill the channel
        tx.send(()).unwrap();
        tx.send(()).unwrap();
        assert!(tx.try_send(()).is_err());

        // empty it
        event_loop
            .dispatch(Some(::std::time::Duration::from_millis(0)), &mut received)
            .unwrap();

        assert_eq!(received.0, 2);
        assert!(!received.1);

        // send a final message and drop the sender
        tx.send(()).unwrap();
        std::mem::drop(tx);

        // final read of the channel
        event_loop
            .dispatch(Some(::std::time::Duration::from_millis(0)), &mut received)
            .unwrap();

        assert_eq!(received.0, 3);
        assert!(received.1);
    }
}