1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! Combinators applying parsers in sequence

#[macro_use]
mod macros;

use crate::error::ParseError;
use crate::internal::{IResult, Parser};

/// Gets an object from the first parser,
/// then gets another object from the second parser.
///
/// # Arguments
/// * `first` The first parser to apply.
/// * `second` The second parser to apply.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::pair;
/// use nom::bytes::complete::tag;
///
/// let mut parser = pair(tag("abc"), tag("efg"));
///
/// assert_eq!(parser("abcefg"), Ok(("", ("abc", "efg"))));
/// assert_eq!(parser("abcefghij"), Ok(("hij", ("abc", "efg"))));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn pair<I, O1, O2, E: ParseError<I>, F, G>(
  mut first: F,
  mut second: G,
) -> impl FnMut(I) -> IResult<I, (O1, O2), E>
where
  F: Parser<I, O1, E>,
  G: Parser<I, O2, E>,
{
  move |input: I| {
    let (input, o1) = first.parse(input)?;
    second.parse(input).map(|(i, o2)| (i, (o1, o2)))
  }
}

// this implementation is used for type inference issues in macros
#[doc(hidden)]
pub fn pairc<I, O1, O2, E: ParseError<I>, F, G>(
  input: I,
  first: F,
  second: G,
) -> IResult<I, (O1, O2), E>
where
  F: Fn(I) -> IResult<I, O1, E>,
  G: Fn(I) -> IResult<I, O2, E>,
{
  pair(first, second)(input)
}

/// Matches an object from the first parser and discards it,
/// then gets an object from the second parser.
///
/// # Arguments
/// * `first` The opening parser.
/// * `second` The second parser to get object.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::preceded;
/// use nom::bytes::complete::tag;
///
/// let mut parser = preceded(tag("abc"), tag("efg"));
///
/// assert_eq!(parser("abcefg"), Ok(("", "efg")));
/// assert_eq!(parser("abcefghij"), Ok(("hij", "efg")));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn preceded<I, O1, O2, E: ParseError<I>, F, G>(
  mut first: F,
  mut second: G,
) -> impl FnMut(I) -> IResult<I, O2, E>
where
  F: Parser<I, O1, E>,
  G: Parser<I, O2, E>,
{
  move |input: I| {
    let (input, _) = first.parse(input)?;
    second.parse(input)
  }
}

// this implementation is used for type inference issues in macros
#[doc(hidden)]
pub fn precededc<I, O1, O2, E: ParseError<I>, F, G>(
  input: I,
  first: F,
  second: G,
) -> IResult<I, O2, E>
where
  F: Fn(I) -> IResult<I, O1, E>,
  G: Fn(I) -> IResult<I, O2, E>,
{
  preceded(first, second)(input)
}

/// Gets an object from the first parser,
/// then matches an object from the second parser and discards it.
///
/// # Arguments
/// * `first` The first parser to apply.
/// * `second` The second parser to match an object.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::terminated;
/// use nom::bytes::complete::tag;
///
/// let mut parser = terminated(tag("abc"), tag("efg"));
///
/// assert_eq!(parser("abcefg"), Ok(("", "abc")));
/// assert_eq!(parser("abcefghij"), Ok(("hij", "abc")));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn terminated<I, O1, O2, E: ParseError<I>, F, G>(
  mut first: F,
  mut second: G,
) -> impl FnMut(I) -> IResult<I, O1, E>
where
  F: Parser<I, O1, E>,
  G: Parser<I, O2, E>,
{
  move |input: I| {
    let (input, o1) = first.parse(input)?;
    second.parse(input).map(|(i, _)| (i, o1))
  }
}

// this implementation is used for type inference issues in macros
#[doc(hidden)]
pub fn terminatedc<I, O1, O2, E: ParseError<I>, F, G>(
  input: I,
  first: F,
  second: G,
) -> IResult<I, O1, E>
where
  F: Fn(I) -> IResult<I, O1, E>,
  G: Fn(I) -> IResult<I, O2, E>,
{
  terminated(first, second)(input)
}

/// Gets an object from the first parser,
/// then matches an object from the sep_parser and discards it,
/// then gets another object from the second parser.
///
/// # Arguments
/// * `first` The first parser to apply.
/// * `sep` The separator parser to apply.
/// * `second` The second parser to apply.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::separated_pair;
/// use nom::bytes::complete::tag;
///
/// let mut parser = separated_pair(tag("abc"), tag("|"), tag("efg"));
///
/// assert_eq!(parser("abc|efg"), Ok(("", ("abc", "efg"))));
/// assert_eq!(parser("abc|efghij"), Ok(("hij", ("abc", "efg"))));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn separated_pair<I, O1, O2, O3, E: ParseError<I>, F, G, H>(
  mut first: F,
  mut sep: G,
  mut second: H,
) -> impl FnMut(I) -> IResult<I, (O1, O3), E>
where
  F: Parser<I, O1, E>,
  G: Parser<I, O2, E>,
  H: Parser<I, O3, E>,
{
  move |input: I| {
    let (input, o1) = first.parse(input)?;
    let (input, _) = sep.parse(input)?;
    second.parse(input).map(|(i, o2)| (i, (o1, o2)))
  }
}

// this implementation is used for type inference issues in macros
#[doc(hidden)]
pub fn separated_pairc<I, O1, O2, O3, E: ParseError<I>, F, G, H>(
  input: I,
  first: F,
  sep: G,
  second: H,
) -> IResult<I, (O1, O3), E>
where
  F: Fn(I) -> IResult<I, O1, E>,
  G: Fn(I) -> IResult<I, O2, E>,
  H: Fn(I) -> IResult<I, O3, E>,
{
  separated_pair(first, sep, second)(input)
}

/// Matches an object from the first parser and discards it,
/// then gets an object from the second parser,
/// and finally matches an object from the third parser and discards it.
///
/// # Arguments
/// * `first` The first parser to apply and discard.
/// * `second` The second parser to apply.
/// * `third` The third parser to apply and discard.
/// ```rust
/// # use nom::{Err, error::ErrorKind, Needed};
/// # use nom::Needed::Size;
/// use nom::sequence::delimited;
/// use nom::bytes::complete::tag;
///
/// let mut parser = delimited(tag("("), tag("abc"), tag(")"));
///
/// assert_eq!(parser("(abc)"), Ok(("", "abc")));
/// assert_eq!(parser("(abc)def"), Ok(("def", "abc")));
/// assert_eq!(parser(""), Err(Err::Error(("", ErrorKind::Tag))));
/// assert_eq!(parser("123"), Err(Err::Error(("123", ErrorKind::Tag))));
/// ```
pub fn delimited<I, O1, O2, O3, E: ParseError<I>, F, G, H>(
  mut first: F,
  mut second: G,
  mut third: H,
) -> impl FnMut(I) -> IResult<I, O2, E>
where
  F: Parser<I, O1, E>,
  G: Parser<I, O2, E>,
  H: Parser<I, O3, E>,
{
  move |input: I| {
    let (input, _) = first.parse(input)?;
    let (input, o2) = second.parse(input)?;
    third.parse(input).map(|(i, _)| (i, o2))
  }
}

// this implementation is used for type inference issues in macros
#[doc(hidden)]
pub fn delimitedc<I, O1, O2, O3, E: ParseError<I>, F, G, H>(
  input: I,
  first: F,
  second: G,
  third: H,
) -> IResult<I, O2, E>
where
  F: Fn(I) -> IResult<I, O1, E>,
  G: Fn(I) -> IResult<I, O2, E>,
  H: Fn(I) -> IResult<I, O3, E>,
{
  delimited(first, second, third)(input)
}

/// Helper trait for the tuple combinator.
///
/// This trait is implemented for tuples of parsers of up to 21 elements.
pub trait Tuple<I, O, E> {
  /// Parses the input and returns a tuple of results of each parser.
  fn parse(&mut self, input: I) -> IResult<I, O, E>;
}

impl<Input, Output, Error: ParseError<Input>, F: Parser<Input, Output, Error>>
  Tuple<Input, (Output,), Error> for (F,)
{
  fn parse(&mut self, input: Input) -> IResult<Input, (Output,), Error> {
    self.0.parse(input).map(|(i, o)| (i, (o,)))
  }
}

macro_rules! tuple_trait(
  ($name1:ident $ty1:ident, $name2: ident $ty2:ident, $($name:ident $ty:ident),*) => (
    tuple_trait!(__impl $name1 $ty1, $name2 $ty2; $($name $ty),*);
  );
  (__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident, $($name2:ident $ty2:ident),*) => (
    tuple_trait_impl!($($name $ty),+);
    tuple_trait!(__impl $($name $ty),+ , $name1 $ty1; $($name2 $ty2),*);
  );
  (__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident) => (
    tuple_trait_impl!($($name $ty),+);
    tuple_trait_impl!($($name $ty),+, $name1 $ty1);
  );
);

macro_rules! tuple_trait_impl(
  ($($name:ident $ty: ident),+) => (
    impl<
      Input: Clone, $($ty),+ , Error: ParseError<Input>,
      $($name: Parser<Input, $ty, Error>),+
    > Tuple<Input, ( $($ty),+ ), Error> for ( $($name),+ ) {

      fn parse(&mut self, input: Input) -> IResult<Input, ( $($ty),+ ), Error> {
        tuple_trait_inner!(0, self, input, (), $($name)+)

      }
    }
  );
);

macro_rules! tuple_trait_inner(
  ($it:tt, $self:expr, $input:expr, (), $head:ident $($id:ident)+) => ({
    let (i, o) = $self.$it.parse($input.clone())?;

    succ!($it, tuple_trait_inner!($self, i, ( o ), $($id)+))
  });
  ($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $head:ident $($id:ident)+) => ({
    let (i, o) = $self.$it.parse($input.clone())?;

    succ!($it, tuple_trait_inner!($self, i, ($($parsed)* , o), $($id)+))
  });
  ($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $head:ident) => ({
    let (i, o) = $self.$it.parse($input.clone())?;

    Ok((i, ($($parsed)* , o)))
  });
);

tuple_trait!(FnA A, FnB B, FnC C, FnD D, FnE E, FnF F, FnG G, FnH H, FnI I, FnJ J, FnK K, FnL L,
  FnM M, FnN N, FnO O, FnP P, FnQ Q, FnR R, FnS S, FnT T, FnU U);

///Applies a tuple of parsers one by one and returns their results as a tuple.
///
/// ```rust
/// # use nom::{Err, error::ErrorKind};
/// use nom::sequence::tuple;
/// use nom::character::complete::{alpha1, digit1};
/// let mut parser = tuple((alpha1, digit1, alpha1));
///
/// assert_eq!(parser("abc123def"), Ok(("", ("abc", "123", "def"))));
/// assert_eq!(parser("123def"), Err(Err::Error(("123def", ErrorKind::Alpha))));
/// ```
pub fn tuple<I, O, E: ParseError<I>, List: Tuple<I, O, E>>(
  mut l: List,
) -> impl FnMut(I) -> IResult<I, O, E> {
  move |i: I| l.parse(i)
}

#[cfg(test)]
mod tests {
  use super::*;

  #[test]
  fn single_element_tuples() {
    use crate::character::complete::alpha1;
    use crate::{error::ErrorKind, Err};

    let mut parser = tuple((alpha1,));
    assert_eq!(parser("abc123def"), Ok(("123def", ("abc",))));
    assert_eq!(
      parser("123def"),
      Err(Err::Error(("123def", ErrorKind::Alpha)))
    );
  }
}