1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//! Methods for converting shapes into triangles.

use ImageSize;
use BACK_END_MAX_VERTEX_COUNT as BUFFER_SIZE;
use interpolation::lerp;
use types::{Line, SourceRectangle, Polygon, Polygons, Radius, Rectangle, Resolution};
use math::{multiply, orient, translate, Matrix2d, Scalar, Vec2d};
use radians::Radians;

/// Transformed x coordinate as f32.
#[inline(always)]
pub fn tx(m: Matrix2d, x: Scalar, y: Scalar) -> f32 {
    (m[0][0] * x + m[0][1] * y + m[0][2]) as f32
}

/// Transformed y coordinate as f32.
#[inline(always)]
pub fn ty(m: Matrix2d, x: Scalar, y: Scalar) -> f32 {
    (m[1][0] * x + m[1][1] * y + m[1][2]) as f32
}

/// Streams tweened polygons using linear interpolation.
#[inline(always)]
pub fn with_lerp_polygons_tri_list<F>(m: Matrix2d, polygons: Polygons, tween_factor: Scalar, f: F)
    where F: FnMut(&[[f32; 2]])
{

    let poly_len = polygons.len() as Scalar;
    // Map to interval between 0 and 1.
    let tw = tween_factor % 1.0;
    // Map negative values to positive.
    let tw = if tw < 0.0 { tw + 1.0 } else { tw };
    // Map to frame.
    let tw = tw * poly_len;
    // Get the current frame.
    let frame = tw as usize;
    // Get the next frame.
    let next_frame = (frame + 1) % polygons.len();
    let p0 = polygons[frame];
    let p1 = polygons[next_frame];
    // Get factor between frames.
    let tw = tw - frame as Scalar;
    let n = polygons[0].len();
    stream_polygon_tri_list(m, (0..n).map(|j| lerp(&p0[j], &p1[j], &tw)), f);
}

/// Streams an ellipse specified by a resolution.
#[inline(always)]
pub fn with_ellipse_tri_list<F>(resolution: Resolution, m: Matrix2d, rect: Rectangle, f: F)
    where F: FnMut(&[[f32; 2]])
{
    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let (cw, ch) = (0.5 * w, 0.5 * h);
    let (cx, cy) = (x + cw, y + ch);
    let n = resolution;
    stream_polygon_tri_list(m,
        (0..n).map(|i| {
            let angle = i as Scalar / n as Scalar * <Scalar as Radians>::_360();
            [cx + angle.cos() * cw, cy + angle.sin() * ch]
        }), f);
}

/// Streams a round border line.
#[inline(always)]
pub fn with_round_border_line_tri_list<F>(resolution_cap: Resolution,
                                          m: Matrix2d,
                                          line: Line,
                                          round_border_radius: Radius,
                                          f: F)
    where F: FnMut(&[[f32; 2]])
{

    let radius = round_border_radius;
    let (x1, y1, x2, y2) = (line[0], line[1], line[2], line[3]);
    let (dx, dy) = (x2 - x1, y2 - y1);
    let w = (dx * dx + dy * dy).sqrt();
    let m = multiply(m, translate([x1, y1]));
    let m = multiply(m, orient(dx, dy));
    let n = resolution_cap * 2;
    stream_polygon_tri_list(m,
        (0..n).map(|j| {
            // Detect the half circle from index.
            // There is one half circle at each end of the line.
            // Together they form a full circle if
            // the length of the line is zero.
            match j {
                j if j >= resolution_cap => {
                    // Compute the angle to match start and end
                    // point of half circle.
                    // This requires an angle offset since
                    // the other end of line is the first half circle.
                    let angle = (j - resolution_cap) as Scalar / (resolution_cap - 1) as Scalar *
                                <Scalar as Radians>::_180() +
                                <Scalar as Radians>::_180();
                    // Rotate 90 degrees since the line is horizontal.
                    let angle = angle + <Scalar as Radians>::_90();
                    [w + angle.cos() * radius, angle.sin() * radius]
                }
                j => {
                    // Compute the angle to match start and end
                    // point of half circle.
                    let angle = j as Scalar / (resolution_cap - 1) as Scalar *
                                <Scalar as Radians>::_180();
                    // Rotate 90 degrees since the line is horizontal.
                    let angle = angle + <Scalar as Radians>::_90();
                    [angle.cos() * radius, angle.sin() * radius]
                }
            }
        }), f);
}

/// Streams a round rectangle.
#[inline(always)]
pub fn with_round_rectangle_tri_list<F>(resolution_corner: Resolution,
                                        m: Matrix2d,
                                        rect: Rectangle,
                                        round_radius: Radius,
                                        f: F)
    where F: FnMut(&[[f32; 2]])
{
    use vecmath::traits::FromPrimitive;

    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let radius = round_radius;
    let n = resolution_corner * 4;
    stream_polygon_tri_list(m,
        (0..n).map(|j| {
            // Detect quarter circle from index.
            // There is one quarter circle at each corner.
            // Together they form a full circle if
            // each side of rectangle is 2 times the radius.
            match j {
                j if j >= resolution_corner * 3 => {
                    // Compute the angle to match start and end
                    // point of quarter circle.
                    // This requires an angle offset since this
                    // is the last quarter.
                    let angle: Scalar =
                        (j - resolution_corner * 3) as Scalar / (resolution_corner - 1) as Scalar *
                        <Scalar as Radians>::_90() +
                        <Scalar as FromPrimitive>::from_f64(3.0) * <Scalar as Radians>::_90();
                    // Set center of the circle to the last corner.
                    let (cx, cy) = (x + w - radius, y + radius);
                    [cx + angle.cos() * radius, cy + angle.sin() * radius]
                }
                j if j >= resolution_corner * 2 => {
                    // Compute the angle to match start and end
                    // point of quarter circle.
                    // This requires an angle offset since
                    // this is the second last quarter.
                    let angle =
                        (j - resolution_corner * 2) as Scalar / (resolution_corner - 1) as Scalar *
                        <Scalar as Radians>::_90() + <Scalar as Radians>::_180();
                    // Set center of the circle to the second last corner.
                    let (cx, cy) = (x + radius, y + radius);
                    [cx + angle.cos() * radius, cy + angle.sin() * radius]
                }
                j if j >= resolution_corner * 1 => {
                    // Compute the angle to match start and end
                    // point of quarter circle.
                    // This requires an angle offset since
                    // this is the second quarter.
                    let angle = (j - resolution_corner) as Scalar / (resolution_corner - 1) as Scalar *
                                <Scalar as Radians>::_90() +
                                <Scalar as Radians>::_90();
                    // Set center of the circle to the second corner.
                    let (cx, cy) = (x + radius, y + h - radius);
                    [cx + angle.cos() * radius, cy + angle.sin() * radius]
                }
                j => {
                    // Compute the angle to match start and end
                    // point of quarter circle.
                    let angle = j as Scalar / (resolution_corner - 1) as Scalar *
                                <Scalar as Radians>::_90();
                    // Set center of the circle to the first corner.
                    let (cx, cy) = (x + w - radius, y + h - radius);
                    [cx + angle.cos() * radius, cy + angle.sin() * radius]
                }
            }
        }), f);
}

/// Streams a polygon into tri list.
/// Uses buffers that fit inside L1 cache.
///
/// `polygon` is a function that provides the vertices that comprise the polygon. Each
/// call to E will return a new vertex until there are none left.
///
/// `f` is a function that consumes the tri list constructed by the output of `polygon`,
/// one chunk (buffer) at a time.
///
/// Each chunk (buffer) is a fixed size array) of the format:
///
/// ```
/// //     [[x0, y0], [x1, y1], [x2, y2], [x3, y3], ... [y4, y5], ...]
/// //      ^--------------------------^  ^--------------------^
/// //        3 Points of triangle   3 points of second triangle,
/// ```
///
/// Together all the chunks comprise the full tri list. Each time the buffer size is
/// reached, that chunk is fed to `f`, then this function proceeds using a new buffer
/// until a call to `polygon` returns `None`, indicating there are no points left in
/// the polygon. (in which case the last partially filled buffer is sent to `f`)
pub fn stream_polygon_tri_list<E, F>(m: Matrix2d, mut polygon: E, mut f: F)
    where E: Iterator<Item = Vec2d>,
          F: FnMut(&[[f32; 2]])
{

    let mut vertices: [[f32; 2]; BUFFER_SIZE] = [[0.0; 2]; BUFFER_SIZE];
    // Get the first point which will be used a lot.
    let fp = match polygon.next() {
        None => return,
        Some(val) => val,
    };
    let f1 = [tx(m, fp[0], fp[1]), ty(m, fp[0], fp[1])];
    let gp = match polygon.next() {
        None => return,
        Some(val) => val,
    };
    let mut g1 = [tx(m, gp[0], gp[1]), ty(m, gp[0], gp[1])];
    let mut i = 0;
    let vertices_per_triangle = 3;
    let align_vertices = vertices_per_triangle;
    'read_vertices: loop {
        let ind_out = i * align_vertices;
        vertices[ind_out] = f1;

        // Copy vertex.
        let p = match polygon.next() {
            None => break 'read_vertices,
            Some(val) => val,
        };
        let pos = [tx(m, p[0], p[1]), ty(m, p[0], p[1])];

        vertices[ind_out + 1] = g1;
        vertices[ind_out + 2] = pos;
        g1 = pos;

        i += 1;
        // Buffer is full.
        if i * align_vertices + 1 >= vertices.len() {
            // Send chunk and start over.
            f(&vertices[0..i * align_vertices]);
            i = 0;
        }
    }

    if i > 0 {
        f(&vertices[0..i * align_vertices]);
    }
}

/// Streams an ellipse border specified by a resolution.
#[inline(always)]
pub fn with_ellipse_border_tri_list<F>(resolution: Resolution,
                                       m: Matrix2d,
                                       rect: Rectangle,
                                       border_radius: Radius,
                                       f: F)
    where F: FnMut(&[[f32; 2]])
{

    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let (cw, ch) = (0.5 * w, 0.5 * h);
    let (cw1, ch1) = (cw + border_radius, ch + border_radius);
    let (cw2, ch2) = (cw - border_radius, ch - border_radius);
    let (cx, cy) = (x + cw, y + ch);
    let n = resolution;
    let mut i = 0;
    stream_quad_tri_list(m,
                         || {
        if i > n {
            return None;
        }

        let angle = i as Scalar / n as Scalar * <Scalar as Radians>::_360();
        let cos = angle.cos();
        let sin = angle.sin();
        i += 1;
        Some(([cx + cos * cw1, cy + sin * ch1], [cx + cos * cw2, cy + sin * ch2]))
    },
                         f);
}

/// Streams an arc between the two radian boundaries.
#[inline(always)]
pub fn with_arc_tri_list<F>(start_radians: Scalar,
                            end_radians: Scalar,
                            resolution: Resolution,
                            m: Matrix2d,
                            rect: Rectangle,
                            border_radius: Radius,
                            f: F)
    where F: FnMut(&[[f32; 2]])
{

    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let (cw, ch) = (0.5 * w, 0.5 * h);
    let (cw1, ch1) = (cw + border_radius, ch + border_radius);
    let (cw2, ch2) = (cw - border_radius, ch - border_radius);
    let (cx, cy) = (x + cw, y + ch);
    let mut i = 0;

    let twopi = <Scalar as Radians>::_360();
    let max_seg_size = twopi / resolution as Scalar;

    let (start_radians, delta) = if (end_radians - start_radians).abs() >= twopi {
        // Remove overlap.
        (0.0, twopi)
    } else {
        // Take true modulus by 2pi.
        (start_radians, (((end_radians - start_radians) % twopi) + twopi) % twopi)
    };

    // Taking ceiling here implies that the resolution parameter provides a
    // lower bound on the drawn resolution.
    let n_quads = (delta / max_seg_size).ceil() as u64;

    // n_quads * seg_size exactly spans the included angle.
    let seg_size = delta / n_quads as Scalar;
    stream_quad_tri_list(m,
                         || {
        if i > n_quads {
            return None;
        }

        let angle = start_radians + (i as Scalar * seg_size);

        let cos = angle.cos();
        let sin = angle.sin();
        i += 1;
        Some(([cx + cos * cw1, cy + sin * ch1], [cx + cos * cw2, cy + sin * ch2]))
    },
                         f);
}

/// Streams a round rectangle border.
#[inline(always)]
pub fn with_round_rectangle_border_tri_list<F>(resolution_corner: Resolution,
                                               m: Matrix2d,
                                               rect: Rectangle,
                                               round_radius: Radius,
                                               border_radius: Radius,
                                               f: F)
    where F: FnMut(&[[f32; 2]])
{
    use vecmath::traits::FromPrimitive;

    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let radius = round_radius;
    let radius1 = round_radius + border_radius;
    let radius2 = round_radius - border_radius;
    let n = resolution_corner * 4;
    let mut i = 0;
    stream_quad_tri_list(m,
                         || {
        if i > n {
            return None;
        }

        let j = i;
        i += 1;
        // Detect quarter circle from index.
        // There is one quarter circle at each corner.
        // Together they form a full circle if
        // each side of rectangle is 2 times the radius.
        match j {
            j if j == n => {
                let (cx, cy) = (x + w - radius, y + h - radius);
                Some(([cx + radius1, cy], [cx + radius2, cy]))
            }
            j if j >= resolution_corner * 3 => {
                // Compute the angle to match start and end
                // point of quarter circle.
                // This requires an angle offset since this
                // is the last quarter.
                let angle: Scalar =
                    (j - resolution_corner * 3) as Scalar / (resolution_corner - 1) as Scalar *
                    <Scalar as Radians>::_90() +
                    <Scalar as FromPrimitive>::from_f64(3.0) * <Scalar as Radians>::_90();
                // Set center of the circle to the last corner.
                let (cx, cy) = (x + w - radius, y + radius);
                let cos = angle.cos();
                let sin = angle.sin();
                Some(([cx + cos * radius1, cy + sin * radius1],
                      [cx + cos * radius2, cy + sin * radius2]))
            }
            j if j >= resolution_corner * 2 => {
                // Compute the angle to match start and end
                // point of quarter circle.
                // This requires an angle offset since
                // this is the second last quarter.
                let angle =
                    (j - resolution_corner * 2) as Scalar / (resolution_corner - 1) as Scalar *
                    <Scalar as Radians>::_90() + <Scalar as Radians>::_180();
                // Set center of the circle to the second last corner.
                let (cx, cy) = (x + radius, y + radius);
                let cos = angle.cos();
                let sin = angle.sin();
                Some(([cx + cos * radius1, cy + sin * radius1],
                      [cx + cos * radius2, cy + sin * radius2]))
            }
            j if j >= resolution_corner * 1 => {
                // Compute the angle to match start and end
                // point of quarter circle.
                // This requires an angle offset since
                // this is the second quarter.
                let angle = (j - resolution_corner) as Scalar / (resolution_corner - 1) as Scalar *
                            <Scalar as Radians>::_90() +
                            <Scalar as Radians>::_90();
                // Set center of the circle to the second corner.
                let (cx, cy) = (x + radius, y + h - radius);
                let cos = angle.cos();
                let sin = angle.sin();
                Some(([cx + cos * radius1, cy + sin * radius1],
                      [cx + cos * radius2, cy + sin * radius2]))
            }
            j => {
                // Compute the angle to match start and end
                // point of quarter circle.
                let angle = j as Scalar / (resolution_corner - 1) as Scalar *
                            <Scalar as Radians>::_90();
                // Set center of the circle to the first corner.
                let (cx, cy) = (x + w - radius, y + h - radius);
                let cos = angle.cos();
                let sin = angle.sin();
                Some(([cx + cos * radius1, cy + sin * radius1],
                      [cx + cos * radius2, cy + sin * radius2]))
            }
        }
    },
                         f);
}

/// Streams a quad into tri list.
///
/// Uses buffers that fit inside L1 cache.
/// The 'quad_edge' stream returns two points
/// defining the next edge.
///
/// `quad_edge` is a function that returns two vertices, which together comprise
/// one edge of a quad
///
///
/// `f` is a function that consumes the tri list constructed by the output of
/// `quad_edge`, one chunk (buffer) at a time
///
/// The tri list is series of buffers (fixed size array) of the format:
///
/// ```
/// //     [[x0, y0], [x1, y1], [x2, y2], [x3, y3], ... [y4, y5], ...]
/// //      ^--------------------------^  ^--------------------^
/// //        3 Points of triangle   3 points of second triangle,
/// //      ^------------------------------------^          __
/// //         Two triangles together form a single quad |\\ 2|
/// //                                                   |1\\ |
/// //                                                   |__\\|
/// ```
/// Together all the chunks comprise the full tri list. Each time the buffer size is
/// reached, that chunk is fed to `f`, then this function proceeds using a new buffer
/// until a call to `quad_edge` returns `None`, indicating there are no more edges left.
/// (in which case the last partially filled buffer is sent to `f`)
pub fn stream_quad_tri_list<E, F>(m: Matrix2d, mut quad_edge: E, mut f: F)
    where E: FnMut() -> Option<(Vec2d, Vec2d)>,
          F: FnMut(&[[f32; 2]])
{
    let mut vertices: [[f32; 2]; BUFFER_SIZE] = [[0.0; 2]; BUFFER_SIZE];
    // Get the two points .
    let (fp1, fp2) = match quad_edge() {
        None => return,
        Some((val1, val2)) => (val1, val2),
    };
    // Transform the points using the matrix.
    let mut f1 = [tx(m, fp1[0], fp1[1]), ty(m, fp1[0], fp1[1])];
    let mut f2 = [tx(m, fp2[0], fp2[1]), ty(m, fp2[0], fp2[1])];
    // Counts the quads.
    let mut i = 0;
    let triangles_per_quad = 2;
    let vertices_per_triangle = 3;
    let align_vertices = triangles_per_quad * vertices_per_triangle;
    loop {
        // Read two more points.
        let (gp1, gp2) = match quad_edge() {
            None => break,
            Some((val1, val2)) => (val1, val2),
        };
        // Transform the points using the matrix.
        let g1 = [tx(m, gp1[0], gp1[1]), ty(m, gp1[0], gp1[1])];
        let g2 = [tx(m, gp2[0], gp2[1]), ty(m, gp2[0], gp2[1])];
        let ind_out = i * align_vertices;

        // First triangle.
        vertices[ind_out + 0] = f1;
        vertices[ind_out + 1] = f2;
        vertices[ind_out + 2] = g1;

        // Second triangle.
        vertices[ind_out + 3] = f2;
        vertices[ind_out + 4] = g1;
        vertices[ind_out + 5] = g2;

        // Next quad.
        i += 1;

        // Set next current edge.
        f1 = g1;
        f2 = g2;

        // Buffer is full.
        if i * align_vertices >= vertices.len() {
            // Send chunk and start over.
            f(&vertices[0..i * align_vertices]);
            i = 0;
        }
    }

    if i > 0 {
        f(&vertices[0..i * align_vertices]);
    }
}

/// Splits polygon into convex segments.
/// Create a buffer that fits into L1 cache with 1KB overhead.
///
/// See stream_polygon_tri_list docs for detailed explanation.
pub fn with_polygon_tri_list<F>(m: Matrix2d, polygon: Polygon, f: F)
    where F: FnMut(&[[f32; 2]])
{
    stream_polygon_tri_list(m, (0..polygon.len()).map(|i| polygon[i]), f);
}

/// Creates triangle list vertices from rectangle.
#[inline(always)]
pub fn rect_tri_list_xy(m: Matrix2d, rect: Rectangle) -> [[f32; 2]; 6] {
    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let (x2, y2) = (x + w, y + h);
    [[tx(m, x, y), ty(m, x, y)],
     [tx(m, x2, y), ty(m, x2, y)],
     [tx(m, x, y2), ty(m, x, y2)],
     [tx(m, x2, y), ty(m, x2, y)],
     [tx(m, x2, y2), ty(m, x2, y2)],
     [tx(m, x, y2), ty(m, x, y2)]]
}

/// Creates triangle list vertices from rectangle.
#[inline(always)]
pub fn rect_border_tri_list_xy(m: Matrix2d,
                               rect: Rectangle,
                               border_radius: Radius)
                               -> [[f32; 2]; 24] {
    let (x, y, w, h) = (rect[0], rect[1], rect[2], rect[3]);
    let (w1, h1) = (w + border_radius, h + border_radius);
    let (w2, h2) = (w - border_radius, h - border_radius);
    let (x11, y11) = (x - border_radius, y - border_radius);
    let (x21, y21) = (x + border_radius, y + border_radius);
    let (x12, y12) = (x + w1, y + h1);
    let (x22, y22) = (x + w2, y + h2);
    [[tx(m, x11, y11), ty(m, x11, y11)],
     [tx(m, x12, y11), ty(m, x12, y11)],
     [tx(m, x21, y21), ty(m, x21, y21)],

     [tx(m, x21, y21), ty(m, x21, y21)],
     [tx(m, x12, y11), ty(m, x12, y11)],
     [tx(m, x22, y21), ty(m, x22, y21)],

     [tx(m, x22, y21), ty(m, x22, y21)],
     [tx(m, x12, y11), ty(m, x12, y11)],
     [tx(m, x12, y12), ty(m, x12, y12)],

     [tx(m, x22, y21), ty(m, x22, y21)],
     [tx(m, x12, y12), ty(m, x12, y12)],
     [tx(m, x22, y22), ty(m, x22, y22)],

     [tx(m, x12, y12), ty(m, x12, y12)],
     [tx(m, x22, y22), ty(m, x22, y22)],
     [tx(m, x11, y12), ty(m, x11, y12)],

     [tx(m, x22, y22), ty(m, x22, y22)],
     [tx(m, x11, y12), ty(m, x11, y12)],
     [tx(m, x21, y22), ty(m, x21, y22)],

     [tx(m, x11, y12), ty(m, x11, y12)],
     [tx(m, x21, y21), ty(m, x21, y21)],
     [tx(m, x21, y22), ty(m, x21, y22)],

     [tx(m, x11, y12), ty(m, x11, y12)],
     [tx(m, x11, y11), ty(m, x11, y11)],
     [tx(m, x21, y21), ty(m, x21, y21)]]
}

/// Creates triangle list texture coords from image.
#[inline(always)]
pub fn rect_tri_list_uv<I: ImageSize>(image: &I, source_rect: SourceRectangle) -> [[f32; 2]; 6] {
    let (w, h) = image.get_size();
    let (src_x, src_y, src_w, src_h) =
        (source_rect[0], source_rect[1], source_rect[2], source_rect[3]);

    let x1 = src_x as f32 / w as f32;
    let y1 = src_y as f32 / h as f32;
    let x2 = (src_w + src_x) as f32 / w as f32;
    let y2 = (src_h + src_y) as f32 / h as f32;
    [[x1, y1], [x2, y1], [x1, y2], [x2, y1], [x2, y2], [x1, y2]]
}