1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Bit level parsers and combinators
//!
//! Bit parsing is handled by tweaking the input in most macros.
//! In byte level parsing, the input is generally a `&[u8]` passed from combinator
//! to combinator as the slices are manipulated.
//!
//! Bit parsers take a `(&[u8], usize)` as input. The first part of the tuple is a byte slice,
//! the second part is a bit offset in the first byte of the slice.
//!
//! By passing a pair like this, we can leverage most of the existing combinators, and avoid
//! transforming the whole slice to a vector of booleans. This should make it easy
//! to see a byte slice as a bit stream, and parse code points of arbitrary bit length.
//!

/// Transforms its byte slice input into a bit stream for the underlying parser. This allows the
/// given bit stream parser to work on a byte slice input.
///
/// Signature:
/// `bits!( parser ) => ( &[u8], (&[u8], usize) -> IResult<(&[u8], usize), T> ) -> IResult<&[u8], T>`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::{Err, Needed};
/// # fn main() {
///  named!( take_4_bits<u8>, bits!( take_bits!( 4u8 ) ) );
///
///  let input = vec![0xAB, 0xCD, 0xEF, 0x12];
///  let sl    = &input[..];
///
///  assert_eq!(take_4_bits( sl ), Ok( (&sl[1..], 0xA) ));
///  assert_eq!(take_4_bits( &b""[..] ), Err(Err::Incomplete(Needed::new(1))));
/// # }
#[macro_export(local_inner_macros)]
macro_rules! bits (
  ($i:expr, $submac:ident!( $($args:tt)* )) => ({
    $crate::bits::bitsc($i, move |i| { $submac!(i, $($args)*) })
  });
  ($i:expr, $f:expr) => (
    bits!($i, call!($f))
  );
);

/// Counterpart to `bits`, `bytes!` transforms its bit stream input into a byte slice for the underlying
/// parser, allowing byte-slice parsers to work on bit streams.
///
/// Signature:
/// `bytes!( parser ) => ( (&[u8], usize), &[u8] -> IResult<&[u8], T> ) -> IResult<(&[u8], usize), T>`,
///
/// A partial byte remaining in the input will be ignored and the given parser will start parsing
/// at the next full byte.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # use nom::combinator::rest;
/// # use nom::error::{Error, ErrorKind};
/// # fn main() {
///
/// named!( parse<(u8, u8, &[u8])>,  bits!( tuple!(
///    take_bits!(4u8),
///    take_bits!(8u8),
///    bytes!(rest::<_, Error<_>>)
/// )));
///
///  let input = &[0xde, 0xad, 0xbe, 0xaf];
///
///  assert_eq!(parse( input ), Ok(( &[][..], (0xd, 0xea, &[0xbe, 0xaf][..]) )));
/// # }
#[macro_export(local_inner_macros)]
macro_rules! bytes (
  ($i:expr, $submac:ident!( $($args:tt)* )) => ({
    $crate::bits::bytesc($i, move |i| { $submac!(i, $($args)*) })
  });
  ($i:expr, $f:expr) => (
    bytes!($i, call!($f))
  );
);

/// Consumes the specified number of bits and returns them as the specified type.
///
/// Signature:
/// `take_bits!(type, count) => ( (&[T], usize), U, usize) -> IResult<(&[T], usize), U>`
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
/// named!(bits_pair<(&[u8], usize), (u8, u8)>, pair!( take_bits!(4u8), take_bits!(4u8) ) );
/// named!( take_pair<(u8, u8)>, bits!( bits_pair ) );
///
/// let input = vec![0xAB, 0xCD, 0xEF];
/// let sl    = &input[..];
///
/// assert_eq!(take_pair( sl ),       Ok((&sl[1..], (0xA, 0xB))) );
/// assert_eq!(take_pair( &sl[1..] ), Ok((&sl[2..], (0xC, 0xD))) );
/// # }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! take_bits (
  ($i:expr, $count:expr) => (
    {
      let res: $crate::IResult<_, _> = $crate::bits::streaming::take($count)($i);
      res
    }
  );
);

/// Matches the given bit pattern.
///
/// Signature:
/// `tag_bits!(type, count, pattern) => ( (&[T], usize), U, usize, U) -> IResult<(&[T], usize), U>`
///
/// The caller must specify the number of bits to consume. The matched value is included in the
/// result on success.
///
/// ```
/// # #[macro_use] extern crate nom;
/// # fn main() {
///  named!( take_a<u8>, bits!( tag_bits!(4usize, 0xA) ) );
///
///  let input = vec![0xAB, 0xCD, 0xEF];
///  let sl    = &input[..];
///
///  assert_eq!(take_a( sl ),       Ok((&sl[1..], 0xA)) );
/// # }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! tag_bits (
  ($i:expr, $count:expr, $p: expr) => (
    {
      let res: $crate::IResult<_, _> = $crate::bits::streaming::tag($p, $count)($i);
      res
    }
  )
);

#[cfg(test)]
mod tests {
  use crate::error::ErrorKind;
  use crate::internal::{Err, IResult, Needed};
  use crate::lib::std::ops::{AddAssign, Shl, Shr};

  #[test]
  fn take_bits() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];

    assert_eq!(take_bits!((sl, 0), 0u8), Ok(((sl, 0), 0)));
    assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170)));
    assert_eq!(take_bits!((sl, 0), 3u8), Ok(((&sl[0..], 3), 5)));
    assert_eq!(take_bits!((sl, 0), 6u8), Ok(((&sl[0..], 6), 42)));
    assert_eq!(take_bits!((sl, 1), 1u8), Ok(((&sl[0..], 2), 0)));
    assert_eq!(take_bits!((sl, 1), 2u8), Ok(((&sl[0..], 3), 1)));
    assert_eq!(take_bits!((sl, 1), 3u8), Ok(((&sl[0..], 4), 2)));
    assert_eq!(take_bits!((sl, 6), 3u8), Ok(((&sl[1..], 1), 5)));
    assert_eq!(take_bits!((sl, 0), 10u8), Ok(((&sl[1..], 2), 683)));
    assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170)));
    assert_eq!(take_bits!((sl, 6), 10u8), Ok(((&sl[2..], 0), 752)));
    assert_eq!(take_bits!((sl, 6), 11u8), Ok(((&sl[2..], 1), 1504)));
    assert_eq!(take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), 700_163)));
    assert_eq!(take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), 716_851)));
    let r: IResult<_, u32> = take_bits!((sl, 4), 22u8);
    assert_eq!(r, Err(Err::Incomplete(Needed::new(22))));
  }

  #[test]
  fn tag_bits() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];

    assert_eq!(tag_bits!((sl, 0), 3u8, 0b101), Ok(((&sl[0..], 3), 5)));
    assert_eq!(tag_bits!((sl, 0), 4u8, 0b1010), Ok(((&sl[0..], 4), 10)));
  }

  named!(ch<(&[u8],usize),(u8,u8)>,
    do_parse!(
      tag_bits!(3u8, 0b101) >>
      x: take_bits!(4u8)    >>
      y: take_bits!(5u8)    >>
      (x,y)
    )
  );

  #[test]
  fn chain_bits() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];
    assert_eq!(ch((&input[..], 0)), Ok(((&sl[1..], 4), (5, 15))));
    assert_eq!(ch((&input[..], 4)), Ok(((&sl[2..], 0), (7, 16))));
    assert_eq!(ch((&input[..1], 0)), Err(Err::Incomplete(Needed::new(5))));
  }

  named!(ch_bytes<(u8, u8)>, bits!(ch));
  #[test]
  fn bits_to_bytes() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    assert_eq!(ch_bytes(&input[..]), Ok((&input[2..], (5, 15))));
    assert_eq!(ch_bytes(&input[..1]), Err(Err::Incomplete(Needed::new(1))));
    assert_eq!(
      ch_bytes(&input[1..]),
      Err(Err::Error(error_position!(&input[1..], ErrorKind::TagBits)))
    );
  }

  named!(
    bits_bytes_bs,
    bits!(bytes!(
      crate::combinator::rest::<_, crate::error::Error<&[u8]>>
    ))
  );
  #[test]
  fn bits_bytes() {
    let input = [0b10_10_10_10];
    assert_eq!(
      bits_bytes_bs(&input[..]),
      Ok((&[][..], &[0b10_10_10_10][..]))
    );
  }

  #[derive(PartialEq, Debug)]
  struct FakeUint(u32);

  impl AddAssign for FakeUint {
    fn add_assign(&mut self, other: FakeUint) {
      *self = FakeUint(self.0 + other.0);
    }
  }

  impl Shr<usize> for FakeUint {
    type Output = FakeUint;

    fn shr(self, shift: usize) -> FakeUint {
      FakeUint(self.0 >> shift)
    }
  }

  impl Shl<usize> for FakeUint {
    type Output = FakeUint;

    fn shl(self, shift: usize) -> FakeUint {
      FakeUint(self.0 << shift)
    }
  }

  impl From<u8> for FakeUint {
    fn from(i: u8) -> FakeUint {
      FakeUint(u32::from(i))
    }
  }

  #[test]
  fn non_privitive_type() {
    let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11];
    let sl = &input[..];

    assert_eq!(
      take_bits!((sl, 0), 20u8),
      Ok(((&sl[2..], 4), FakeUint(700_163)))
    );
    assert_eq!(
      take_bits!((sl, 4), 20u8),
      Ok(((&sl[3..], 0), FakeUint(716_851)))
    );
    let r3: IResult<_, FakeUint> = take_bits!((sl, 4), 22u8);
    assert_eq!(r3, Err(Err::Incomplete(Needed::new(22))));
  }
}