Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
//! Types and functionality related to the calculation of a **Graph**'s rendering depth order.

use daggy::Walker;
use std;
use fnv;
use super::{Graph, Node};
use widget;


/// Contains Node indices in order of depth, starting with the deepest.
#[derive(Debug)]
pub struct DepthOrder {
    /// The primary **Vec** storing the **DepthOrder**'s ordered indices.
    pub indices: Vec<widget::Id>,
    /// Used for storing indices of "floating" widgets during depth sorting so that they may be
    /// visited after widgets of the root tree.
    floating: Vec<widget::Id>,
}


impl DepthOrder {

    /// Construct a new empty **DepthOrder**.
    pub fn new() -> DepthOrder {
        DepthOrder {
            indices: Vec::new(),
            floating: Vec::new(),
        }
    }

    /// Construct a new empty **DepthOrder**.
    ///
    /// There can be at most two indices per widget (the widget and the widget's scrollbar). Thus
    /// we'll reserve double the number of nodes given.
    pub fn with_node_capacity(n_nodes: usize) -> DepthOrder {
        let n_indices = n_nodes * 2;
        DepthOrder {
            indices: Vec::with_capacity(n_indices),
            floating: Vec::with_capacity(n_nodes),
        }
    }

    /// Update the **DepthOrder** (starting with the deepest) for all nodes in the given **Graph**.
    ///
    /// FIXME:
    /// This likely needs to be re-written, and will probably fail for graphs with many floating
    /// widgets instantiated upon other floating widgets.
    ///
    /// The proper algorithm should be a full toposort where the neighbours of each node are
    /// visited in the order specified within `visit_by_depth`.
    ///
    /// The `visit_by_depth` algorithm should not be recursive and instead use either looping,
    /// walking or iteration.
    pub fn update(&mut self,
                  graph: &Graph,
                  root: widget::Id,
                  updated_widgets: &fnv::FnvHashSet<widget::Id>)
    {
        let DepthOrder { ref mut indices, ref mut floating } = *self;

        // Clear the buffers and ensure they've enough memory allocated.
        let num_nodes = graph.node_count();
        indices.clear();
        indices.reserve(num_nodes);
        floating.clear();
        floating.reserve(num_nodes);

        // Visit each node in order of depth and add their indices to depth_order.
        // If the widget is floating, then store it in the floating deque instead.
        visit_by_depth(graph, root, updated_widgets, indices, floating);

        // Sort the floating widgets so that the ones clicked last come last.
        floating.sort_by(|&a, &b| match (&graph[a], &graph[b]) {
            (&Node::Widget(ref a), &Node::Widget(ref b)) => {
                let a_floating = a.maybe_floating.expect("Not floating");
                let b_floating = b.maybe_floating.expect("Not floating");
                a_floating.time_last_clicked.cmp(&b_floating.time_last_clicked)
            },
            _ => std::cmp::Ordering::Equal,
        });

        // Visit all of the floating widgets last.
        while !floating.is_empty() {
            let idx = floating.remove(0);
            visit_by_depth(graph, idx, updated_widgets, indices, floating);
        }
    }

}


/// Recursive function for visiting all nodes within the dag.
fn visit_by_depth(graph: &Graph,
                  idx: widget::Id,
                  updated_widgets: &fnv::FnvHashSet<widget::Id>,
                  depth_order: &mut Vec<widget::Id>,
                  floating_deque: &mut Vec<widget::Id>)
{
    // First, if the current node is a widget and it was set in the current `set_widgets` stage,
    // store its index.
    match graph.widget(idx).is_some() && updated_widgets.contains(&idx) {
        true => depth_order.push(idx),
        // If the current node is not an updated widget, we're done with this branch.
        false => return,
    }

    // Sort the children of the current node by their `.depth` members.
    // FIXME: We should remove these allocations by storing a `child_sorter` buffer in each Widget
    // node (perhaps in the `Container`).
    let mut child_sorter: Vec<widget::Id> = graph.depth_children(idx).iter(&graph).nodes().collect();

    child_sorter.sort_by(|&a, &b| {
        use std::cmp::Ordering;

        if let (&Node::Widget(ref a), &Node::Widget(ref b)) = (&graph[a], &graph[b]) {
            match b.depth.partial_cmp(&a.depth).expect("Depth was NaN!") {
                Ordering::Equal => a.instantiation_order_idx.cmp(&b.instantiation_order_idx),
                ordering => ordering,
            }
        } else {
            Ordering::Equal
        }
    });

    // Then, visit each of the child widgets. If we come across any floating widgets, we'll store
    // those in the floating deque so that we can visit them following the current tree.
    for child_idx in child_sorter.into_iter() {

        // Determine whether or not the node is a floating widget.
        let maybe_is_floating = graph.widget(child_idx).map(|w| w.maybe_floating.is_some());

        // Store floating widgets int he floating_deque for visiting after the current tree.
        match maybe_is_floating {
            Some(true) => floating_deque.push(child_idx),
            _ => visit_by_depth(graph, child_idx, updated_widgets, depth_order, floating_deque),
        }
    }
}