1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//! UI scaling is important, so read the docs for this module if you don't want to be confused. //! //! ## Why should I care about UI scaling? //! //! Modern computer screens don't have a consistent relationship between resolution and size. //! 1920x1080 is a common resolution for both desktop and mobile screens, despite mobile screens //! normally being less than a quarter the size of their desktop counterparts. What's more, neither //! desktop nor mobile screens are consistent resolutions within their own size classes - common //! mobile screens range from below 720p to above 1440p, and desktop screens range from 720p to 5K //! and beyond. //! //! Given that, it's a mistake to assume that 2D content will only be displayed on screens with //! a consistent pixel density. If you were to render a 96-pixel-square image on a 1080p screen, //! then render the same image on a similarly-sized 4K screen, the 4K rendition would only take up //! about a quarter of the physical space as it did on the 1080p screen. That issue is especially //! problematic with text rendering, where quarter-sized text becomes a significant legibility //! problem. //! //! Failure to account for the scale factor can create a significantly degraded user experience. //! Most notably, it can make users feel like they have bad eyesight, which will potentially cause //! them to think about growing elderly, resulting in them having an existential crisis. Once users //! enter that state, they will no longer be focused on your application. //! //! ## How should I handle it? //! //! The solution to this problem is to account for the device's *scale factor*. The scale factor is //! the factor UI elements should be scaled by to be consistent with the rest of the user's system - //! for example, a button that's normally 50 pixels across would be 100 pixels across on a device //! with a scale factor of `2.0`, or 75 pixels across with a scale factor of `1.5`. //! //! Many UI systems, such as CSS, expose DPI-dependent units like [points] or [picas]. That's //! usually a mistake, since there's no consistent mapping between the scale factor and the screen's //! actual DPI. Unless you're printing to a physical medium, you should work in scaled pixels rather //! than any DPI-dependent units. //! //! ### Position and Size types //! //! Winit's `Physical(Position|Size)` types correspond with the actual pixels on the device, and the //! `Logical(Position|Size)` types correspond to the physical pixels divided by the scale factor. //! All of Winit's functions return physical types, but can take either logical or physical //! coordinates as input, allowing you to use the most convenient coordinate system for your //! particular application. //! //! Winit's position and size types types are generic over their exact pixel type, `P`, to allow the //! API to have integer precision where appropriate (e.g. most window manipulation functions) and //! floating precision when necessary (e.g. logical sizes for fractional scale factors and touch //! input). If `P` is a floating-point type, please do not cast the values with `as {int}`. Doing so //! will truncate the fractional part of the float, rather than properly round to the nearest //! integer. Use the provided `cast` function or `From`/`Into` conversions, which handle the //! rounding properly. Note that precision loss will still occur when rounding from a float to an //! int, although rounding lessens the problem. //! //! ### Events //! //! Winit will dispatch a [`ScaleFactorChanged`](crate::event::WindowEvent::ScaleFactorChanged) //! event whenever a window's scale factor has changed. This can happen if the user drags their //! window from a standard-resolution monitor to a high-DPI monitor, or if the user changes their //! DPI settings. This gives you a chance to rescale your application's UI elements and adjust how //! the platform changes the window's size to reflect the new scale factor. If a window hasn't //! received a [`ScaleFactorChanged`](crate::event::WindowEvent::ScaleFactorChanged) event, //! then its scale factor is `1.0`. //! //! ## How is the scale factor calculated? //! //! Scale factor is calculated differently on different platforms: //! //! - **Windows:** On Windows 8 and 10, per-monitor scaling is readily configured by users from the //! display settings. While users are free to select any option they want, they're only given a //! selection of "nice" scale factors, i.e. 1.0, 1.25, 1.5... on Windows 7, the scale factor is //! global and changing it requires logging out. See [this article][windows_1] for technical //! details. //! - **macOS:** "retina displays" have a scale factor of 2.0. Otherwise, the scale factor is 1.0. //! Intermediate scale factors are never used. It's possible for any display to use that 2.0 scale //! factor, given the use of the command line. //! - **X11:** Many man-hours have been spent trying to figure out how to handle DPI in X11. Winit //! currently uses a three-pronged approach: //! + Use the value in the `WINIT_X11_SCALE_FACTOR` environment variable, if present. //! + If not present, use the value set in `Xft.dpi` in Xresources. //! + Otherwise, calcuate the scale factor based on the millimeter monitor dimensions provided by XRandR. //! //! If `WINIT_X11_SCALE_FACTOR` is set to `randr`, it'll ignore the `Xft.dpi` field and use the //! XRandR scaling method. Generally speaking, you should try to configure the standard system //! variables to do what you want before resorting to `WINIT_X11_SCALE_FACTOR`. //! - **Wayland:** On Wayland, scale factors are set per-screen by the server, and are always //! integers (most often 1 or 2). //! - **iOS:** Scale factors are set by Apple to the value that best suits the device, and range //! from `1.0` to `3.0`. See [this article][apple_1] and [this article][apple_2] for more //! information. //! - **Android:** Scale factors are set by the manufacturer to the value that best suits the //! device, and range from `1.0` to `4.0`. See [this article][android_1] for more information. //! - **Web:** The scale factor is the ratio between CSS pixels and the physical device pixels. //! In other words, it is the value of [`window.devicePixelRatio`][web_1]. It is affected by //! both the screen scaling and the browser zoom level and can go below `1.0`. //! //! [points]: https://en.wikipedia.org/wiki/Point_(typography) //! [picas]: https://en.wikipedia.org/wiki/Pica_(typography) //! [windows_1]: https://docs.microsoft.com/en-us/windows/win32/hidpi/high-dpi-desktop-application-development-on-windows //! [apple_1]: https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html //! [apple_2]: https://developer.apple.com/design/human-interface-guidelines/macos/icons-and-images/image-size-and-resolution/ //! [android_1]: https://developer.android.com/training/multiscreen/screendensities //! [web_1]: https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio pub trait Pixel: Copy + Into<f64> { fn from_f64(f: f64) -> Self; fn cast<P: Pixel>(self) -> P { P::from_f64(self.into()) } } impl Pixel for u8 { fn from_f64(f: f64) -> Self { f.round() as u8 } } impl Pixel for u16 { fn from_f64(f: f64) -> Self { f.round() as u16 } } impl Pixel for u32 { fn from_f64(f: f64) -> Self { f.round() as u32 } } impl Pixel for i8 { fn from_f64(f: f64) -> Self { f.round() as i8 } } impl Pixel for i16 { fn from_f64(f: f64) -> Self { f.round() as i16 } } impl Pixel for i32 { fn from_f64(f: f64) -> Self { f.round() as i32 } } impl Pixel for f32 { fn from_f64(f: f64) -> Self { f as f32 } } impl Pixel for f64 { fn from_f64(f: f64) -> Self { f } } /// Checks that the scale factor is a normal positive `f64`. /// /// All functions that take a scale factor assert that this will return `true`. If you're sourcing scale factors from /// anywhere other than winit, it's recommended to validate them using this function before passing them to winit; /// otherwise, you risk panics. #[inline] pub fn validate_scale_factor(scale_factor: f64) -> bool { scale_factor.is_sign_positive() && scale_factor.is_normal() } /// A position represented in logical pixels. /// /// The position is stored as floats, so please be careful. Casting floats to integers truncates the /// fractional part, which can cause noticable issues. To help with that, an `Into<(i32, i32)>` /// implementation is provided which does the rounding for you. #[derive(Debug, Copy, Clone, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct LogicalPosition<P> { pub x: P, pub y: P, } impl<P> LogicalPosition<P> { #[inline] pub const fn new(x: P, y: P) -> Self { LogicalPosition { x, y } } } impl<P: Pixel> LogicalPosition<P> { #[inline] pub fn from_physical<T: Into<PhysicalPosition<X>>, X: Pixel>( physical: T, scale_factor: f64, ) -> Self { physical.into().to_logical(scale_factor) } #[inline] pub fn to_physical<X: Pixel>(&self, scale_factor: f64) -> PhysicalPosition<X> { assert!(validate_scale_factor(scale_factor)); let x = self.x.into() * scale_factor; let y = self.y.into() * scale_factor; PhysicalPosition::new(x, y).cast() } #[inline] pub fn cast<X: Pixel>(&self) -> LogicalPosition<X> { LogicalPosition { x: self.x.cast(), y: self.y.cast(), } } } impl<P: Pixel, X: Pixel> From<(X, X)> for LogicalPosition<P> { fn from((x, y): (X, X)) -> LogicalPosition<P> { LogicalPosition::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<(X, X)> for LogicalPosition<P> { fn into(self: Self) -> (X, X) { (self.x.cast(), self.y.cast()) } } impl<P: Pixel, X: Pixel> From<[X; 2]> for LogicalPosition<P> { fn from([x, y]: [X; 2]) -> LogicalPosition<P> { LogicalPosition::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<[X; 2]> for LogicalPosition<P> { fn into(self: Self) -> [X; 2] { [self.x.cast(), self.y.cast()] } } /// A position represented in physical pixels. #[derive(Debug, Copy, Clone, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct PhysicalPosition<P> { pub x: P, pub y: P, } impl<P> PhysicalPosition<P> { #[inline] pub const fn new(x: P, y: P) -> Self { PhysicalPosition { x, y } } } impl<P: Pixel> PhysicalPosition<P> { #[inline] pub fn from_logical<T: Into<LogicalPosition<X>>, X: Pixel>( logical: T, scale_factor: f64, ) -> Self { logical.into().to_physical(scale_factor) } #[inline] pub fn to_logical<X: Pixel>(&self, scale_factor: f64) -> LogicalPosition<X> { assert!(validate_scale_factor(scale_factor)); let x = self.x.into() / scale_factor; let y = self.y.into() / scale_factor; LogicalPosition::new(x, y).cast() } #[inline] pub fn cast<X: Pixel>(&self) -> PhysicalPosition<X> { PhysicalPosition { x: self.x.cast(), y: self.y.cast(), } } } impl<P: Pixel, X: Pixel> From<(X, X)> for PhysicalPosition<P> { fn from((x, y): (X, X)) -> PhysicalPosition<P> { PhysicalPosition::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<(X, X)> for PhysicalPosition<P> { fn into(self: Self) -> (X, X) { (self.x.cast(), self.y.cast()) } } impl<P: Pixel, X: Pixel> From<[X; 2]> for PhysicalPosition<P> { fn from([x, y]: [X; 2]) -> PhysicalPosition<P> { PhysicalPosition::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<[X; 2]> for PhysicalPosition<P> { fn into(self: Self) -> [X; 2] { [self.x.cast(), self.y.cast()] } } /// A size represented in logical pixels. #[derive(Debug, Copy, Clone, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct LogicalSize<P> { pub width: P, pub height: P, } impl<P> LogicalSize<P> { #[inline] pub const fn new(width: P, height: P) -> Self { LogicalSize { width, height } } } impl<P: Pixel> LogicalSize<P> { #[inline] pub fn from_physical<T: Into<PhysicalSize<X>>, X: Pixel>( physical: T, scale_factor: f64, ) -> Self { physical.into().to_logical(scale_factor) } #[inline] pub fn to_physical<X: Pixel>(&self, scale_factor: f64) -> PhysicalSize<X> { assert!(validate_scale_factor(scale_factor)); let width = self.width.into() * scale_factor; let height = self.height.into() * scale_factor; PhysicalSize::new(width, height).cast() } #[inline] pub fn cast<X: Pixel>(&self) -> LogicalSize<X> { LogicalSize { width: self.width.cast(), height: self.height.cast(), } } } impl<P: Pixel, X: Pixel> From<(X, X)> for LogicalSize<P> { fn from((x, y): (X, X)) -> LogicalSize<P> { LogicalSize::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<(X, X)> for LogicalSize<P> { fn into(self: LogicalSize<P>) -> (X, X) { (self.width.cast(), self.height.cast()) } } impl<P: Pixel, X: Pixel> From<[X; 2]> for LogicalSize<P> { fn from([x, y]: [X; 2]) -> LogicalSize<P> { LogicalSize::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<[X; 2]> for LogicalSize<P> { fn into(self: Self) -> [X; 2] { [self.width.cast(), self.height.cast()] } } /// A size represented in physical pixels. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct PhysicalSize<P> { pub width: P, pub height: P, } impl<P> PhysicalSize<P> { #[inline] pub const fn new(width: P, height: P) -> Self { PhysicalSize { width, height } } } impl<P: Pixel> PhysicalSize<P> { #[inline] pub fn from_logical<T: Into<LogicalSize<X>>, X: Pixel>(logical: T, scale_factor: f64) -> Self { logical.into().to_physical(scale_factor) } #[inline] pub fn to_logical<X: Pixel>(&self, scale_factor: f64) -> LogicalSize<X> { assert!(validate_scale_factor(scale_factor)); let width = self.width.into() / scale_factor; let height = self.height.into() / scale_factor; LogicalSize::new(width, height).cast() } #[inline] pub fn cast<X: Pixel>(&self) -> PhysicalSize<X> { PhysicalSize { width: self.width.cast(), height: self.height.cast(), } } } impl<P: Pixel, X: Pixel> From<(X, X)> for PhysicalSize<P> { fn from((x, y): (X, X)) -> PhysicalSize<P> { PhysicalSize::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<(X, X)> for PhysicalSize<P> { fn into(self: Self) -> (X, X) { (self.width.cast(), self.height.cast()) } } impl<P: Pixel, X: Pixel> From<[X; 2]> for PhysicalSize<P> { fn from([x, y]: [X; 2]) -> PhysicalSize<P> { PhysicalSize::new(x.cast(), y.cast()) } } impl<P: Pixel, X: Pixel> Into<[X; 2]> for PhysicalSize<P> { fn into(self: Self) -> [X; 2] { [self.width.cast(), self.height.cast()] } } /// A size that's either physical or logical. #[derive(Debug, Copy, Clone, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub enum Size { Physical(PhysicalSize<u32>), Logical(LogicalSize<f64>), } impl Size { pub fn new<S: Into<Size>>(size: S) -> Size { size.into() } pub fn to_logical<P: Pixel>(&self, scale_factor: f64) -> LogicalSize<P> { match *self { Size::Physical(size) => size.to_logical(scale_factor), Size::Logical(size) => size.cast(), } } pub fn to_physical<P: Pixel>(&self, scale_factor: f64) -> PhysicalSize<P> { match *self { Size::Physical(size) => size.cast(), Size::Logical(size) => size.to_physical(scale_factor), } } } impl<P: Pixel> From<PhysicalSize<P>> for Size { #[inline] fn from(size: PhysicalSize<P>) -> Size { Size::Physical(size.cast()) } } impl<P: Pixel> From<LogicalSize<P>> for Size { #[inline] fn from(size: LogicalSize<P>) -> Size { Size::Logical(size.cast()) } } /// A position that's either physical or logical. #[derive(Debug, Copy, Clone, PartialEq)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub enum Position { Physical(PhysicalPosition<i32>), Logical(LogicalPosition<f64>), } impl Position { pub fn new<S: Into<Position>>(position: S) -> Position { position.into() } pub fn to_logical<P: Pixel>(&self, scale_factor: f64) -> LogicalPosition<P> { match *self { Position::Physical(position) => position.to_logical(scale_factor), Position::Logical(position) => position.cast(), } } pub fn to_physical<P: Pixel>(&self, scale_factor: f64) -> PhysicalPosition<P> { match *self { Position::Physical(position) => position.cast(), Position::Logical(position) => position.to_physical(scale_factor), } } } impl<P: Pixel> From<PhysicalPosition<P>> for Position { #[inline] fn from(position: PhysicalPosition<P>) -> Position { Position::Physical(position.cast()) } } impl<P: Pixel> From<LogicalPosition<P>> for Position { #[inline] fn from(position: LogicalPosition<P>) -> Position { Position::Logical(position.cast()) } }